What's new
  • Please note members who been with us for more than 10 years have been upgraded to "Veteran" status and will receive exclusive benefits. If you wish to find out more about this or support IcMag and get same benefits, check this thread here.
  • Important notice: ICMag's T.O.U. has been updated. Please review it here. For your convenience, it is also available in the main forum menu, under 'Quick Links"!

The Origin Of Cannabis

englishrick

Plumber/Builder
Mentor
ICMag Donor
Veteran
8,000 BCE


* One of the oldest archaeological relics in existence has been dated to this time period.

* A fragment of hemp cloth was found at Catal.Hüyük (what is now Turkey).

Artifacts recovered from sites in China indicate hemp was cultivated since the remote beginnings of agriculture settlements and used for making textiles as well as for food and medicine and fibers


hemp02.gif


The origin of hemp is thought to be in Central Asia (Kazakistan, Pakistan, Nepal, the Kashmir region of India, and the Tibetan region of China) -- two regions in particular: in the Mesopotamian Valley between the Tigris and Euphrates Rivers (present day Iraq) and, at the same time, in the Huang He (Yellow River) valley in China. Hemp spread from its native habitat toward the west in two directions. One route led through the Russian lowland plains to Scandinavia, extending to Poland, Germany, and the Baltic region. This distribution included the Carpathian Mountains and as far as the Danube River delta. This is where the northern and central Russian geographical race of hemp originated. The other route led through Asia Minor to the Mediterranean countries and into the provinces of the Roman Empire (Illyria, Gallia, and Hispania). From there, the southern Mediterranean ecological group originated, which encompassed southern Russia, Romania, Hungary, Serbia, Italy, and Spain. In central and northern Europe, hemp was introduced by the Slavs.

Shao Hong and Robert C. Clarke 1996 said:
Taxonomic studies of Cannabis in China
http://www.hempfood.com/iha/iha03207.html

Introduction

Cannabis has spread naturally and has also been cultivated in nearly every province and climatic zone in China from ancient times to the present. The fibers of Cannabis stalks are most commonly used to make ropes, clothes and other textiles, while its seeds are pressed for their oil, or are eaten raw or roasted as snacks between meals (especially in northwestern Yunnan Province). They are also mixed in buttered tea by Tibetans. Some Cannabis is illicitly planted for smoking in the Xinjiang Province of northwestern China. Drug Cannabis is rarely, if ever, applied as a medicine in Chinese hospitals because it is erroneously considered addicting.Besides the general name Da Ma (great hemp), the Chinese vernacular terms for Cannabis include Huo Ma (fire hemp), Xian Ma (line hemp) and Huang Ma (yellow hemp). The fruits of Cannabis are called Ma Zi (hemp seed) and Huo Ma Ren (fire hemp seed). The female inflorescences are called Ma Fen (fragrant hemp branch). The terms Da Ma, Xian Ma, and Huang Ma for the plants and their products and Da Ma Zi or simply Ma Zi for the fruits are usually applied to the fiber and seed producing C. sativa cultivars and landraces. Cannabis smoking is not popular or widespread in China. The terms Da Ma and Huo Ma are only rarely used to denote smoking Cannabis in the south and east of China. However, Huo Ma is much more commonly used by traditional Chinese pharmacists to denote the cleaned hemp seeds incorporated into local herbal stomach remedies. The seeds for medical use most often come from either cultivated or naturalized C. sativa landraces.

Chinese scientists have carried out thorough research on the genus Cannabis and their articles, published in diverse Chinese books and journals, cover nearly all aspects of its study from practical agronomy to public health concerns. This paper concentrates on the literature pertaining directly to the taxonomy and evolution of the genus Cannabis as well as supporting literature from the fields of comparative anatomy and morphology, natural products chemistry, and the most recent tentative approaches to analysis.



History and literature

Contemporary Chinese Cannabis studies began in the 1950's, soon after the People's Republic of China was founded. During those days, a general natural resources survey was carried out all over China. The medicinal and economic values of Cannabis were first recorded in Flora of Chinese Medicinal Plants (Pei and Chou 1951) and it is also recorded in the Chinese Pharmacopoeia of 1957. Chinese scientists early noticed that Cannabis is a widely distributed plant in China and has medical and other productive applications. Two of the first Chinese books on plant taxonomy, Pictorial Handbook of Chinese Plants (Chia et al. 1958) and Dictionary of Families and Genera of Chinese Seed Plants (How 1958), simultaneously named Cannabis from China as C. sativa L. Since this name was also recorded in Iconographia Cormophytorum Sinicorum (ASBI 1972), one of the most comprehensive and highly respected Chinese plant taxonomy reference books, C. sativa L. has been regarded as the representative name for Chinese Cannabis.

Another form name, C. sativa L. f. ruderalis (Janisch.) Chu, was recorded in Flora Plantarum Herbacearum Chine Boreali-Orientalis (Chu 1959). This new form name was also adopted by Flora of Chinese Economic Plants (Anon. 1961) and specifically represented the Cannabis distributed in some areas of northeastern China. The specimens representing this form in Chinese herbaria do not exhibit the key anatomical character described by Janischevsky (1924), i.e., that the fruit base becomes elongated and forms a "caruncle". However, his collections from Altai and Yili in Xinjiang Province possess the so-called "caruncle" only in some fruits from the same plant. The lack of a caruncle may result from incomplete maturation. Based on the lack of consistent expression of this primary discriminating character, both the form name and the original species name are questionable.

Zhao (1991) proposed that there are four varieties of C. sativa L. distributed in China; sativa, spontanea, indica and kafiristanica. However, while only presenting a basic classification key derived from Small and Cronquist (1976), she did not provide Chinese representative voucher specimens or delimit the range of these taxa except that the specimens from Fukang, Xinjiang, was identified as spontanea.


The Morphology Department of the Botanical Institute of the Academia Sinica (ASBI 1960) reported on the pollen surface features of Chinese Cannabis in Pollen Morphologies of Chinese Plants. The ASBI Handbook of Chinese Oil Plants (1973) discusses the constituents of Cannabis seed oil. Other important chemical components of Cannabis such as the cannabinoids, and the terpenoids which account for its unique aromas, are listed in Lexicon of Chinese Traditional Medicinal Plants (Jiangsu New Medical College 1975), Compilation of Chinese Herbal Medicines (Anon. 1978) and Flora of Economic Plants in Shandong Province (Anon. 1978). Other papers scattered in various journals report the cannabinoid content of specimens from several provinces (e.g. Ling et al. 1985, Liu et al. 1992, Chen et al. 1993, Zhan et al. 1994).

Large scale comprehensive scientific research on Cannabis from 1986 through 1990 (encompassing the disciplines of chemistry, anatomy, morphology, pharmacognosy, drug use survey, etc.) was carried out in several institutes in a coordinated program organized by the National Institute for the Control of Pharmaceutical and Biological Products under the organization of the Bureau of Public Health. The results are collected mostly in Corpus of Scientific Theses on Cannabis (Anonymous 1991).


iha03207-2.jpg


Achievements and problems

China is one of the largest countries in the world, covering over 9.6 million square kilometers.

There are cultivated landraces, feral escapees from cultivation and truly wild Cannabis populations in China. Chinese Cannabis populations from different locations vary widely in morphology, chemical contents and levels of biologically active compounds, but much of the same variation can also be found within single plants at varying stages of development. Climatic and edaphic conditions also cause wide variation in proposed taxonomic characters and often confound attempts at accurate systematic analyses. Collecting and classifying accessions from various conditions of climate, elevation, microclimate and soil leads to ambiguous results. Since most Cannabis varieties are dioecious, (the morphologically different male and female flowers are borne on separate plants), morphological taxonomic decisions should be based on observations of both staminate and pistillate individuals. However, many herbarium specimens are collected from juvenile plants and so are devoid of any flowers. It is important to collect samples during a common developmental "window" (i.e., floral maturation) so that data can be compared more accurately. This can only be accomplished by growing accessions in a common garden and carefully sorting herbarium samples by developmental maturity and sexual type.


Specimens of Chinese Cannabis are mostly kept in the regional herbaria of the Botanical Institute of the Academia Sinica (ASBI) and some larger universities. Herbarium specimens and fruits are also preserved in some institutes and universities at which the studies on Cannabis were carried out in recent years, such as Beijing Medical University and the National Institute for the Control of Pharmaceutical and Biological Products. Other Cannabis taxonomic materials are mostly found in the local departments of the Bureau of Public Health.


Morphological and anatomical studies of herbarium specimens and living samples of Chinese Cannabis reveal the following unique observations. Cultivated varieties have significantly larger fruits than the wild populations. Size of the fruits is only a stable criterion of classification as to whether samples are cultivated or wild forms, but does not indicate geographical origin. Surface patterns of the persistent vestigial perianths adherent on the achenes show some differences between the wild and the cultivated forms. Wild fruits generally have deeper, and more irregularly dispersed, pigmented areas (blotchy spots and stripes) than those of the cultivated ones. All other morphological and anatomical parameters found to vary widely due to environmental influences are not suitable as criteria for taxonomic and evolutionary studies.


The content of delta-9-THC in fruiting inflorescences of Chinese Cannabis, from different individual plants, ranges across a broad scale from 0.02% to 4.38% of dry weight (Zhao 1991, Zhan et al. 1994). THC content can vary widely even among individual samples taken from the same inflorescence. In addition, THC breaks down slowly at room temperature. This means that samples must be fresh, large and well-homogenized to provide accurate results. Landraces cultivated for drug use are generally the highest in THC, while those cultivated for fiber and seed uses are the lowest in THC. Escaped populations have THC contents approximating those of the related cultivated populations, and wild populations generally have low THC contents. According to the forensically-oriented view of Small and Cronquist (1976), all samples grown for producing Cannabis cigarettes (Ma Yan) in Xinjiang Province can be classified as members of the "drug" group (THC greater than 0.3% of dry weight). Therefore, as an amendment of general opinion, the distribution of Chinese drug type Cannabis might be expanded to include areas south of 42ƒN latitude in the Xinjiang Province of western China, in addition to the regions of southern and eastern China, south of 30ƒN latitude.


Liu et al. (1992) reported that there is little or no THC, CBD or CBN in the stems and leaves of male plants both from Shache and Kashi, Xinjiang, while there are higher contents of THC in the stems and leaves of female plants from the two areas. They stated that only the female plants contain medicinal properties or are used for smoking. The upper inflorescences, younger leaves and resin gland secretions of female plants are used for making Cannabis cigarettes in Kashi, Hetian and Aksu in Xinjiang. The THC content of Xinjiang Cannabis cigarettes ranged from 0.42% to 1.06% of dry weight in Kashi Prefecture, and the average THC content of Cannabis cigarettes from Shache was 0.79% of dry weight (Chen et al. 1993).


The comparative histology of the stalk (Zhao 1991) showed that the average number of vessels in vessel groups of xylem in 40 samples of Cannabis (sp. and subsp.) from 24 regions of China is variable. This finding disagrees with the results of Anderson (1974) who found the average numbers of vessels in vessel groups of xylem in C. sativa and C. indica were 1.39 and 3.05 respectively. However, it must be remembered that what Anderson called C. indica may have been what Chinese taxonomists usually refer to as C. sativa ssp. indica, and may also have included samples of what the Russian taxonomists Vavilov and Bukinich (1929) called C. indica ssp. afghanica or C. indica ssp. kafiristanica. Chinese herbarium collections do not include any examples of these taxa. The existence of only a few calcareous crystals in Chinese Cannabis also differs from Anderson's observations of C. indica.


Experimental taxonomic studies of Cannabis, including statistics of germination rates of seeds, making artificial hybridizations and analysis of hereditary characteristics of filial generations, were carried out at Beijing Medical University from 1990-93, under the supervision of Prof. Cheng Ching-young, one of the most well-known taxonomists in China. Her results revealed that few important taxonomic criteria can be used to distinguish the samples from Xinjiang, Gansu, Inner Mongolia and Ningxia Provinces in northwestern China. From the dissertation of one of her students (Yang 1993), Cheng concluded that there is only one species (C. sativa L.) consisting of two forms: (f. sativa and f. indica) in China. It is possible to distinguish this (as well as more subtle) genetic differences between cultivated and wild forms by means of further DNA analyses.


Since there are no classical taxonomic characters suitable to classify species and varieties of Cannabis, other new appropriate technologies have been introduced into this field. A project using advanced molecular methods was started at Beijing Medical University in late 1993 (Shao and Liu 1994). The chromosome number of Cannabis is 2n=20 (Harlan et al. 1973), but there is little information concerning chromosome karyotype, genome or DNA. Employing the molecular genetic techniques of DNA polymorphisms, the molecular genetic variations of Chinese Cannabis resources can be better investigated and the evolutionary relationships between wild populations, landraces, and cultivars can be revealed.


Data reflecting the relatedness of differing populations is also valuable to modern plant breeders wishing to utilize diverse gene pools in the development of modern Cannabis cultivars. The goals of current work are to: 1) determine the distribution of wild, semi-wild and cultivated Cannabis in China, 2) compare accessions at the molecular genetic level, 3) determine origins of cultivated Cannabis taxa and evolutionary relationships between them, as well as between wild and cultivated taxa, 4) make molecular identification of sex during early developmental stages of Cannabis, 5) determine the molecular genetic differences between fiber and drug types of Cannabis and 6) determine the range of genetic variation in modern landraces and cultivars.


Presently, we have some preliminary experimental results: 1) The DNA lengths of Cannabis from Yunnan, Guizhou and Xinjiang Provinces are about 10-20 kilobases. 2) Cultivated samples have mutations in the DNA structure indicative of artificial selection. 3) DNA restriction fragments are different between the cultivated samples and the wild samples. 4) The samples of different sexes exhibit unique identifiable fragments. 5) Identifiable genetic fingerprints exist in different accessions. Recent discoveries about Cannabis DNA encouraged us to continue the project, but further achievements must be supported by additional funding.

Cannabis Sativa

“Hemp” refers primarily to Cannabis sativa L. (Cannabaceae), although the term has been applied to dozens of species representing at least 22 genera, often prominent fiber crops. For examples, Manila hemp (abaca) is Musa textilis Née, sisal hemp is Agave sisalina Perrine, and sunn hemp is Crotolaria juncea L. Especially confusing is the phrase “Indian hemp,” which has been used both for narcotic Asian land races of C. sativa (so-called C. indica Lamarck of India) and Apocynum cannabinum L., which was used by North American Indians as a fiber plant. Cannabis sativa is a multi-purpose plant that has been domesticated for bast (phloem) fiber in the stem, a multi-purpose fixed oil in the “seeds” (achenes), and an intoxicating resin secreted by epidermal glands. The common names hemp and marijuana (much less frequently spelled marihuana) have been applied loosely to all three forms, although historically hemp has been used primarily for the fiber cultigen and its fiber preparations, and marijuana for the drug cultigen and its drug preparations. The current hemp industry is making great efforts to point out that “hemp is not marijuana.” Italicized, Cannabis refers to the biological name of the plant (only one species of this genus is commonly recognized, C. sativa L.). Non-italicized, “cannabis” is a generic abstraction, widely used as a noun and adjective, and commonly (often loosely) used both for cannabis plants and/or any or all of the intoxicant preparations made from them.

Probably indigenous to temperate Asia, C. sativa is the most widely cited example of a “camp follower.” It was pre-adapted to thrive in the manured soils around man’s early settlements, which quickly led to its domestication (Schultes 1970). Hemp was harvested by the Chinese 8500 years ago (Schultes and Hofmann 1980). For most of its history, C. sativa was most valued as a fiber source, considerably less so as an intoxicant, and only to a limited extent as an oilseed crop. Hemp is one of the oldest sources of textile fiber, with extant remains of hempen cloth trailing back 6 millennia. Hemp grown for fiber was introduced to western Asia and Egypt, and subsequently to Europe somewhere between 1000 and 2000 BCE. Cultivation in Europe became widespread after 500 ce. The crop was first brought to South America in 1545, in Chile, and to North America in Port Royal, Acadia in 1606. The hemp industry flourished in Kentucky, Missouri, and Illinois between 1840 and 1860 because of the strong demand for sailcloth and cordage (Ehrensing 1998). From the end of the Civil War until 1912, virtually all hemp in the US was produced in Kentucky. During World War I, some hemp cultivation occurred in several states, including Kentucky, Wisconsin, California, North Dakota, South Dakota, Minnesota, Indiana, Illinois, Ohio, Michigan, Kansas, and Iowa (Ehrensing 1998). The second world war led to a brief revival of hemp cultivation in the Midwest, as well as in Canada, because the war cut off supplies of fiber (substantial renewed cultivation also occurred in Germany for the same reason). Until the beginning of the 19th century, hemp was the leading cordage fiber. Until the middle of the 19th century, hemp rivaled flax as the chief textile fiber of vegetable origin, and indeed was described as “the king of fiber-bearing plants,—the standard by which all other fibers are measured” (Boyce 1900). Nevertheless, the Marihuana Tax Act applied in 1938 essentially ended hemp production in the United States, although a small hemp fiber industry continued in Wisconsin until 1958. Similarly in 1938 the cultivation of Cannabis became illegal in Canada under the Opium and Narcotics Act




Prospective endeavors

Considering the difficulties of Cannabis research, the hidden relationships between Cannabis varieties or populations require that new and more advanced techniques be introduced and combined with conventional studies of Cannabis. Following the progress in other disciplines (e.g., blood/tissue typing and genome mapping), studies of classification, systematics and evolution in Cannabis might successfully use modern molecular techniques to solve problems for which conventional methods are inadequate.


Currently, there are several techniques of DNA polymorphism analysis successfully used to find genetic correlations, to detect evolutionary relationships, and to identify a hybrid's possible parents. They have been concerned with plant taxa ranging from families to varieties, in more than 10 families and 20 genera. These modern molecular techniques include: VNTR (Variable Number of Tandem Repeats), RFLP (Restriction Fragment Length Polymorphisms), AP-PCR (Arbitrarily Primed Polymerase Chain Reaction), DAF (DNA Amplification Fingerprint), RAPD (Random Amplified Polymorphic DNA), etc. Other methods applicable to investigation of polymorphisms in mitochondrial and chloroplast DNA have also been developed. These readily available "DNA fingerprint" methods can be used to analyze plant genomes. Two or more of these DNA data, when compared to each other and to other taxonomic data, could greatly improve our understanding of the systematics and evolution of Cannabis.


The Chinese National Natural Science Foundation has supported some molecular taxonomic and systematic projects that mostly employed the technology of chloroplast DNA restriction maps to study wild species in Vitis, the Convallariaceae and Gnetaceae, ferns etc., since 1989 (Qi and Gao 1990 and 1991, Zhu 1992, Zhu and Qi 1993). A few papers about molecular taxonomy and systematics can be found in Chinese scientific journals (Shi 1993, Hong 1993, Shao and Liu 1994, Huang et al.). Most are reviews and conclude that modern molecular technologies can be used to solve plant taxonomic, systematic and evolutionary problems. DNA fingerprint studies of Chinese Cannabis in Beijing Medical University enlisted the modest support of the Bureau of Public Health at the end of 1993, but the project is now short of funds.


We are confident that when the continuing vigorous development of modern molecular biological techniques is accompanied by improvement of our financial environment, research on Cannabis in China will progress greatly and will contribute additional valuable evidence to the studies and applications of Cannabis worldwide.








References

* Anderson, L. C., 1974. A study of systematic wood anatomy in Cannabis. Harvard Botanical Museum Leaflets, 24(2): 29-36.
* Anonymous, 1961. Flora of Chinese Economic Plants. Vol. 1:35, 72. [in Chinese]
* Anonymous, 1978a. Compilation of Chinese Traditional and Herbal Medicines. People's Press, Beijing, Vol. 2: 143-144, t.152s. [in Chinese]
* Anonymous, 1978b. Flora of Economic Plants in Shandong Province. Shandong People's Press, Jinan, Shandong: 53-55, t.6-8. [in Chinese]
* Anonymous 1991. Corpus of Scientific Theses on Cannabis. Interior Book of Medicinal Administration, Bureau of Public Health, P. R. China, Beijing. [in Chinese]
* ASBI, Botanical Institute of Academia Sinica 1960. Pollen Morphologies of Chinese Plants. Science Press, Beijing: 179. [in Chinese]
* ASBI, Botanical Institute of Academia Sinica 1972. Iconographia Cormophytorum Sinicorum Science Press, Beijing, Vol. 1: 503, t.105.x . [in Chinese]
* ASBI, Botanical Institute of Academia Sinica 1973. Handbook of Chinese Oil Plants. Science Press, Beijing: 19. [in Chinese]
* Chen Jian et al. 1993. Determination of delta-9-tetrahydrocannabinol in Xinjiang Cannabis plants and cigarettes. Chinese Bulletin on Drug Dependence 2(2):94. [in Chinese]
* Chia Tsu-chang et al. 1958. Pictorial Handbook of Chinese Plants. Chinese Book Bureau, Shanghai: 918. [in Chinese]
* Chu Yu-chang 1959. Flora Plantarum Herbacearum Chine Boreali-Orientalis. Science Press, Beijing. Vol. 2: 2. [in Chinese]
* Harlan, J. R. et al. 1973. Comparative evolution of cereals. Evolution 27: 311-325.
* Hoehe, M. R., et al. 1991. Genetic and physical mapping of the human cannabinoid receptor on chromosome 6q14-q15. The New Biologist 3(9): 880-885.
* Hong De-yuan, 1993. New development of taxonomy and our policy. Life Science 5(1): 6-9.
* How Foon-chew 1958. A Dictionary of the Families and Genera of Chinese Seed Plants. Science Press, Beijing: 74. [in Chinese]
* Huang Yao et al. 1994. Chloroplast DNA and its utility in the studies on plant systematics. Chinese Bulletin of Botany 11(2): 11-25. [in Chinese]
* Janischevsky, D. E. 1924. Forma konopli na sornykh mestakh v Yugovostochnoi Russi. Ucen. Zap. Saratovsk, Gosud. Cernysevskgo Univ. 2(2): 3-17. [in Russian]
* Jiangsu New Medical College 1975. Lexicon of Chinese Traditional Medicine. Shanghai People's Press, Shanghai: 498-499. [in Chinese]
* Ling Nian et al. 1985. Isolation and identification of delta-9-tetrahydrocannabinol in Zhejiang Cannabis plants. Researches of Chinese Traditional Patent Medicine (8): 29-30. [in Chinese]
* Liu Tian-cheng, et al. 1992. Determination of delta-9-Tetrahydrocannabinol, cannabidiol and cannabinol in Xinjiang Cannabis plants by GC. Chinese Traditional and Herbal Drugs 23(9):463-464. [in Chinese]
* Pei Chien and Chou Tai-yen 1951. Flora of Chinese Medicinal Plants. Vol. 2: 56. [in Chinese]
* Qi Shu-ying and Gao Wen-shu, 1990. Projects of plant science supported by National Natural Science Foundation of China in 1989. Acta Botanica Sinica 32(4): 323-328. [in Chinese]
* Qi Shu-ying and Gao Wen-shu 1991. Projects of plant science supported by National Natural Science Foundation of China in 1990. Acta Botanica Sinica 33(4): 323-328. [in Chinese]
* Serebriakova, T. I. 1940. Fiber plants in Wulff, E. V. (ed.) Flora of Cultivated Plants Vol. 5, Part 1, State Printing Office, Moscow and Leningrad. [in Russian]
* Shao Hong and Liu Jia-ying 1994. The new technology of molecular plant taxonomy and systematics - VNTR as well as DNA fingerprints. Plants (122): 25-27. [in Chinese]
* Shi Su-hua 1993. Preliminary study on Gnetaceae systematics - Molecular biological evidence. Sunyatsenia (Acta of Zhongshan University) 32(2): 55-59. [in Chinese]
* Small, E. and A. Cronquist, 1976. A practical and natural taxonomy for Cannabis. Taxon 25(4): 405-435.
* Vavilov, N. I. and D. D. Bukinich 1929. Agricultural Afghanistan. The Bulletin of Applied Botany, Genetics, and Plant Breeding Supp. 33: 378-82, 474, 480, 584-85, 604. [in Russian]
* World Publishing House (eds.) 1957. Chinese Pharmacopoeia. People's Public Health Press, Beijing. [in Chinese]
* Yang Yong-hong, 1993. A Preliminary Systematic Study on Cannabis sativa L. Dissertation, Beijing Medical University, Beijing. [in Chinese]
* Zhan Er-yi et al. 1994. Analysis of active contents in Cannabis plants of Zongshuying Villa of Kunming. China. Acta of Kunming Medical University 15(2): 40-42. [in Chinese]
* Zhao Da-wen 1991. Taxonomic and Pharmacognosic Researches on Chinese Cannabis. Internal Report, National Institute for the Control of Pharmaceutical and Biological Products. Beijing: 9-13. [in Chinese]
* Zhu Da-bao 1992. Projects of plant science supported by National Natural Science Foundation of China in 1991. Acta Botanica Sinica 34(9): 720-728. [in Chinese]
* Zhu Da-bao and Qi Shu-ying 1993. Projects of plant science supported by National Natural Science Foundation of China in 1992. Acta Botanica Sinica 35(11): 891-892. [in Chinese]






Landrace

The landrace varieties are the earliest form of cultivar and represent the first step in the domestication process. Landraces are highly heterogeneous, having been selected for subsistence agricultural environments where low, but stable yields were important and natural environmental fluctuation required a broad genetic base. Landraces are closely related to the wild ancestors and embody a great deal more genetic variation than do modern, high-yielding varieties that are selected for optimal performance within a narrow range of highly managed environmental conditions. The value of both the wild species and the early landrace varieties in the context of modern plant breeding is that they provide a broad representation of the natural variation that is present in the species as a whole. The fact that natural selection has acted on such populations over the course of evolution makes them particularly valuable as materials for breeders. The value added by imposing a low intensity of human selection on the early landraces resides in the fact that some of these early varieties represent accumulations of alleles that produce phenotypes particularly favorable or attractive to the human eye, nose, palette, or other appetites. It is also noteworthy that some of these rare or unique alleles or allele combinations that were selected by humans might never survive in the wild.

Wild relatives and early landrace varieties have long been recognized as the essential pool of genetic variation that will drive the future of plant improvement (Bessey 1906; Burbank 1914). Early plant collections made by people such as Nikolai Vavilov (1887–1943) or Jack Harlan (1917–1998) inspired the international community to establish long-term collections of plant genetic resources that provide modern plant breeders with the material they need to creatively address the challenges of today (Box 1). Many may question the emphasis on wild and primitive landraces that cannot compete with new, high-yielding varieties in terms of productivity or eating quality, particularly in an age when biotechnology and genetic engineering promise to provide an endless stream of genetic novelty. Indeed, if all forms of novelty were equally valuable, the old varieties would hardly be worth saving. But the security of the world's food supply depends on an exquisite balance between new ideas and the intelligent use of time-tested resources. In 1972, more than a decade before the age of automated sequencing, Jack Harlan commented that, “We are not really much interested in conserving the old varieties as varieties; it is the genes we are concerned about. The old land races can be considered as populations of genes and genetic variability is absolutely essential for further improvement. In fact, variability is absolutely essential to even hold onto what we already have” (Harlan 1972a).


Cultivars (domesticated varieties) have been selected by humans in the last 10,000 years and inevitably represent a subset of the variation found in their wild ancestors. Cultivars are recognizable because they manifest characteristics that are associated with domestication in plants. Unusual or extreme phenotypes, such as large fruit or seed size, intense color, sweet flavor, or pleasing aroma are often selected by humans and maintained in their cultivars for aesthetic reasons, while synchronous ripening or inhibition of seed shattering (a dispersal mechanism) are selected to facilitate harvest. These phenotypes may occur in nature but they will frequently be eliminated by natural selection before they are fixed in a population. Because of human selection, cultivars may exemplify a range of exaggerated phenotypic attributes that give them the appearance of being, on the whole, more diverse than some of the wild populations from which they were derived, but in truth, domestication usually represents a kind of genetic bottleneck. Furthermore, cultivars are grown in agricultural environments that are generally more uniform than the environments in which wild species grow, and this tends to further narrow the gene pool. Thus, while cultivars may embody a high degree of obvious phenotypic variation, this may not always be a good predictor of the extent of their genetic variation.


Modern breeds are descendents of the wild species from which they were derived. The process of domestication dramatically changed the performance and genetic architecture of the ancestral species through the process of hybridization and selection as originally described by Charles Darwin (1859).

Despite the low yields and poor eating quality of most wild ancestors and primitive crop varieties, these ancient sources of genetic variation continue to provide the basic building blocks from which all modern varieties are constructed. Breeders have discovered that genes hidden in these low-yielding ancestors can enhance the performance of some of the world's most productive crop varieties. In this essay, I will provide some historical context for the paper by Gur and Zamir in this issue of PLoS Biology (Gur and Zamir 2004). I will discuss how “smart breeding” recycles “old genes” to develop highly productive, stress-resistant modern varieties and why this approach is particularly attractive to increase food security in regions of the world with high concentrations of genetic diversity.

The job of the plant breeder is to create an improved variety. This may be accomplished simply by selecting a superior individual from among a range of existing possibilities, or it may require that a breeder know how to efficiently swap or replace parts, recombine components, and rebuild a biological system that will be capable of growing vigorously and productively in the context of an agricultural environment. How the breeding is done and what goals are achieved is largely a matter of biological feasibility, consumer demand, and production economics. What is clear is that the surest way to succeed in a reasonable amount of time is to have access to a large and diverse pool of genetic variation.


Variation

There is great variation in Cannabis sativa, because of disruptive domestication for fiber, oilseed, and narcotic resin, and there are features that tend to distinguish these three cultigens (cultivated phases) from each other. Moreover, density of cultivation is used to accentuate certain architectural features. Figure 5 illustrates the divergent appearances of the basic agronomic categories of Cannabis in typical field configurations


Fig. 1.
hemp05.gif

Fig. 1. Typical architecture of categories of cultivated Cannabis sativa. Top left: narcotic plants are generally low, highly branched, and grown well-spaced. Top right: plants grown for oilseed were traditionally well-spaced, and the plants developed medium height and strong branching. Bottom left: fiber cultivars are grown at high density, and are unbranched and very tall. Bottom center: “dual purpose” plants are grown at moderate density, tend to be slightly branched and of medium to tall height. Bottom right: some recent oilseed cultivars are grown at moderate density and are short and relatively unbranched. Degree of branching and height are determined both by the density of the plants and their genetic background.

Highly selected forms of the fiber cultigen possess features maximizing fiber production. Since the nodes tend to disrupt the length of the fiber bundles, thereby limiting quality, tall, relatively unbranched plants with long internodes have been selected. Another strategy has been to select stems that are hollow at the internodes, with limited wood, since this maximizes production of fiber in relation to supporting woody tissues. Similarly, limited seed productivity concentrates the plant’s energy into production of fiber, and fiber cultivars often have low genetic propensity for seed output. Selecting monoecious strains overcomes the problem of differential maturation times and quality of male (staminate) and female (pistillate) plants (males mature 1–3 weeks earlier). Male plants in general are taller, albeit slimmer, less robust, and less productive. Except for the troublesome characteristic of dying after anthesis, male traits are favored for fiber production, in contrast to the situation for drug strains noted below. In former, labor-intensive times, the male plants were harvested earlier than the females, to produce superior fiber. The limited branching of fiber cultivars is often compensated for by possession of large leaves with wide leaflets, which obviously increase the photosynthetic ability of the plants. Since fiber plants have not generally been selected for narcotic purposes, the level of intoxicating constituents is usually limited.

An absence of such fiber-strain traits as tallness, limited branching, long internodes, and very hollow stems, is characteristic of narcotic strains. Drug forms have historically been grown in areas south of the north-temperate zone, often close to the equator, and are photoperiodically adapted to a long season. When grown in north-temperate climates maturation is much-delayed until late fall, or the plants succumb to cold weather before they are able to produce seeds. Unlike fiber strains that have been selected to grow well at extremely high densities, drug strains tend to be less persistent when grown in high concentration (de Meijer 1994). Drug strains can be very similar in appearance to fiber strains. However, a characteristic type of narcotic plant was selected in southern Asia, particularly in India and neighboring countries. This is dioecious, short (about a meter in height), highly branched, with large leaves (i.e. wide leaflets), and it is slow to mature. The appearance is rather like a short, conical Christmas tree.

Until recent times, the cultivation of hemp primarily as an oilseed was largely unknown, except in Russia. Today, it is difficult to reconstruct the type of plant that was grown there as an oilseed, because such cultivation has essentially been abandoned. Oilseed hemp cultivars in the modern sense were not available until very recently, but some land races certainly were grown specifically for seeds in Russia. Dewey (1914) gave the following information: “The short oil-seed hemp with slender stems, about 30 inches high, bearing compact clusters of seeds and maturing in 60 to 90 days, is of little value for fiber production, but the experimental plants, grown from seed imported from Russia, indicate that it may be valuable as an oil-seed crop to be harvested and threshed in the same manner as oil-seed flax.” Most hemp oilseed in Europe is currently obtained from so-called “dual usage” plants (employed for harvest of both stem fiber and seeds, from the same plants). Of the European dual-usage cultivars, ‘Uniko B’ and ‘Fasamo’ are particularly suited to being grown as oilseeds. Very recently, cultivars have been bred specifically for oilseed production. These include ‘Finola,’ formerly known as ‘Fin-314’ and ‘Anka’, which are relatively short, little-branched, mature early in north-temperate regions, and are ideal for high-density planting and harvest with conventional equipment. Dewey (1914) noted that a Turkish narcotic type of land race called “Smyrna” was commonly used in the early 20th century in the US to produce birdseed, because (like most narcotic types of Cannabis) it is densely branched, producing many flowers, hence seeds. While oilseed land races in northern Russia would have been short, early-maturing plants in view of the short growing season, in more southern areas oilseed landraces likely had moderate height, and were spaced more widely to allow abundant branching and seed production to develop. Until Canada replaced China in 1998 as a source of imported seeds for the US, most seeds used for various purposes in the US were sterilized and imported from China. Indeed, China remains the largest producer of hempseed. We have grown Chinese hemp land races, and these were short, branched, adapted to a very long growing season (i.e. they come into flower very slowly in response to photoperiodic induction of short days in the fall), and altogether they were rather reminiscent of Dewey’s description of Smyrna. Although similar in appearance to narcotic strains of C. sativa, the Chinese land races we grew were in fact low in intoxicating constituents, and it may well be that what Dewey thought was a narcotic strain was not. Although some forms of C. sativa have quite large seeds, until recently oilseed forms appear to have been mainly selected for a heavy yield of seeds, usually recognizable by abundant branching. Such forms are typically grown at lower densities than hemp grown only for fiber, as this promotes branching, although it should be understood that the genetic propensity for branching has been selected. Percentage or quality of oil in the seeds does not appear to have been important in the past, although selection for these traits is now being conducted. Most significantly, modern selection is occurring with regard to mechanized harvesting, particularly the ability to grow in high density as single-headed stalks with very short branches bearing considerable seed.








The Pioneers

“Moreover, from our wild plants, we may not only obtain new products but new vigor, new hardiness, new adaptive powers, and endless other desirable new qualities for our cultivated plants. All of these things are as immediate in possibilities and consequences as transcontinental railroads were fifty years ago.”—Luther Burbank, 1914

Luther Burbank (1849–1926) was one of America's first and most prolific plant breeders. He was inspired by Charles Darwin's Variation of Animals and Plants under Domestication (Darwin 1883) to explore the potential of creating new varieties of plants by cross-breeding (hybridization) and selection. Over a 50-year period, he developed more than 800 new varieties of fruits, vegetables, flowers, and grasses. One of his earliest creations was the Burbank potato (1871), a variety of baking potato still popular today. When the Plant Patent Act of 1930 was first introduced in Congress, Thomas Edison testified, “This [bill] will, I feel sure, give us many Burbanks.” The bill passed, and Luther Burbank was awarded 16 posthumous patents for asexually reproduced plants (Burbank 1914).

Nikolai Vavilov (1887–1943), a Russian geneticist and biologist, was one of the first to explore and actively collect wild relatives and early landrace varieties as sources of genetic variation for the future of agriculture. His botanical collecting expeditions (1916–1940) amassed many thousands of rare and valuable specimens that are preserved in the Vavilov Institute of Plant Industry in St. Petersburg, the world's first seed bank and inspiration for the International Crop Germplasm Collections (http://www.sgrp.cgiar.org/publications.h​tml ). Vavilov's concepts in evolutionary genetics, such as the law of homologous series in variation (Vavilov 1922) and the theory of centers of origin of cultivated plants (Vavilov 1926), were major contributions to understanding the distribution of diversity around the world. Vavilov himself died of starvation in a Stalinist prison camp in 1943, victim of a debate about genetics at a time when Trofim Lysenko's theories about the alterability of organisms through directed environmental change proved more compelling to the Soviet leadership than Vavilov's own efforts to demonstrate the genetic value of wild and early landrace diversity.

In the United States, Jack Harlan (1917–1998) was also well known for his plant collection expeditions and eloquent expositions about the value of wild relatives and early domesticated forms of crop plants (Harlan 1972b). What particularly sensitized Jack Harlan to the value of these genetic resources was the fact that he lived through a period of revolutionary change in the way agriculture was practiced, watching as the Green Revolution's high-yielding semi-dwarf varieties of wheat and rice replaced the old landrace varieties throughout Asia and Latin America (Harlan 1975). He understood that the new varieties brought massive and immediate increases in grain production that saved millions from starvation. He also understood that displacement of the traditional varieties from their natural environment presented serious challenges that would require renewed efforts to collect, document, evaluate, and conserve plant genetic resources. “For the sake of future generations, we must collect and study wild and weedy relatives of our cultivated plants as well as the domesticated races. These resources stand between us and catastrophic starvation on a scale we cannot imagine” (Harlan 1972b).

Charlie Rick (1915–2002) was an avid collector of exotic tomato germplasm. He noted that up until the 1940s, progress in tomato improvement lagged and few major innovations were achieved. The turning point, according to Rick, was the introduction of exotic germplasm. As a cultivated species, tomato had experienced a severe genetic bottleneck that led to extreme attrition of genetic variability compared to the wild species of Lycopersicon (Rick and Fobes 1975). Yet, Rick observed that crosses between wild and cultivated species generated a wide array of novel genetic variation in the offspring, despite the fact that routine evaluation of wild and exotic resources often failed to detect the genetic potential of these resources (Rick 1967, 1974). He outlined “pre-breeding” strategies that were designed to uncover positive transgressive variation in backcrossed (inbred) progeny derived from interspecific crosses and believed that this approach would invariably lead to greater utilization of the favorable attributes hidden in tomato exotics (Rick 1983).





^^^the above is not my words,,,,i save many things on my computer and this is some of it,,,,i tryed to add as mutch as i could but to be perfectly honest it woul just take forever,,,,,below is some links to the real text,,,,if anyone can offer anything else on the subject of "The Origin Of Cannabis" or "Cannabis Evoloution" please do,,,,thanks for reading :rick


http://www.innvista.com/health/foods/hemp/history.htm

http://www.hort.purdue.edu/newcrop/ncnu02/v5-284.html
 

Mr.Jones

Member
wow some nice information you got there! very interessting, never knew what the diffrence between industrial hemp and narcotic cannabis was in growth structure...

some basic info i gathered - im not sure if the lineage is right:


hope this helps
 

Thule

Dr. Narrowleaf
Veteran
picture.php



Dug up this map about vegetation zones during the last glacial maximum in order to track down the urheimat of cannabis.

Most of the East European and Siberian steppes where cannabis thrives today were desert back then but there were vast savannahs between Turkey and India.

I circled the two most cannabis friendly areas in red. The earliest traces of cannabis in India are only 4000 years old, but climatewise I see no reason why cannabis could not have survived there. There must have been a cannabis refugia at the visinity of the Caspian Sea, and who knows, maybe seeds of the ruderalis type survived under the ice sheets further north and to the east. There were icy tundras between Central and East Asia which may have formed a natural barrier during the ice age. This could explain why we have two genepools today.

Anyways by 8000 B.C cannabis was in use at the opposite ends of the continent, marked by black dots in the map. That was 4000 years before the domestication of the horse and 6000 years before the silk routes.
 
P

ptg

Great map Thule,thanks...but don't you have a smaller version...maybe America and Groenland aren't necessary...just sayin this cause it seems you circled Turkey as a possible original places?:dunno:
 

Thule

Dr. Narrowleaf
Veteran
Great map Thule,thanks...but don't you have a smaller version...maybe America and Groenland aren't necessary...just sayin this cause it seems you circled Turkey as a possible original places?:dunno:

You're welcome ptg. Hmmm, I didn't think about that at the moment. Asia would have been enough, agreed. :) I didn't find such a map about Asia only, and cutting out America from this one would have also cut out the explanations for the vegetation types.

Turkey is infact where some of the oldest traces of cannabis are found, but I think it might originate on the shores of the Caspian Sea where it spread with indo Iranian people to the rest of the known world much later..
 
P

ptg

Thanks for clearing that up!

Now what would be great is to find a map with population migration at the same period...:)
 

mriko

Green Mujaheed
Veteran
You're welcome ptg. Hmmm, I didn't think about that at the moment. Asia would have been enough, agreed. I didn't find such a map about Asia only, and cutting out America from this one would have also cut out the explanations for the vegetation types.

Turkey is infact where some of the oldest traces of cannabis are found, but I think it might originate on the shores of the Caspian Sea where it spread with indo Iranian people to the rest of the known world much later..

Only Asia wouldn't be enough as Europe as its place too. Oldest trace of cannabis presence (pollen) dates about 8000-10 000 years BC, found in Italy. If memory serves me, about as old pollen have been found in South Western France as well (got to find back the reference).

Caspian sea area & caucasus are most probably a craddle of the plant indeed, and considering that oldest agriculture traces are found in Turkey, it might not be exagerated to suppose an origin of the plant in this region (eastern Turkey).
I wouldn't be surprised that the first spreaders of the plant where hunters-gatherers, who would have taken seeds around with them as food stock (or even to knowingly spread the range of the plant).

Irie !
 

Thule

Dr. Narrowleaf
Veteran
Thanks mriko, I need to update my map. You have a link to the study? I think i read it too but can't find it anymore.

I'm not on my own computer now, so can't really get into this thoroughly but these maps about ice ages refugias and european haplogroups could help.

IceAgeRefugiaR1bR1aIHaplogroups.jpg



RefugiaEuropeLGMSmall.jpg
 

mriko

Green Mujaheed
Veteran
Here it is : http://www.palinopaleobot.unimo.it/staff/Mercuri%20-%20web/articoli%20in%20pdf/Cannabis%20-%20Nemi%20Albano.pdf

this glaciation thing makes me think... research released this week shows that Homo sapiens have interbred with Neanderthal, and we Indo-European hold about 1% to 4% of Neanderthal genes ! damn, I knew it ! just fascinating...

By the way, here's some interesting reading about how entheogenic plant might have been the trigger the start of civilization (historically speaking).
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6X1G-45B65N3-2&_user=10&_coverDate=12%2F31%2F2002&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1327228540&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3515dac1492f1642a11f8d765f65bd44

My, I just found something talking about cannabis pollen having been found in 2000 years old stratas in... Madagascar ! Not a scientific one alas, gotta search deeper; Ehre's the link, in the last paragraph. Sorry, it's French, no time for translating now I am in a googling spree, haha !
http://www.ile-bourbon.net/Madagascar/021201histoire.htm
Il existait déjà à son arrivée, du moins dans l’Ouest et le Moyen-Ouest, de grandes formations herbacées et des formations végétales qui s’étaient adaptées au feu. Et comme le donne à entendre la paléontologie, archéologie de la vie animale et végétale, la disparition de ces animaux fut seulement accélérée par les activités humaines. De fait, à ce qu’on sait, l’extinction des vertébrés subfossiles qui s’acheva au 10e siècle, commença il y a 3 000 ans et connut deux maxima : l’un il y a 2 000 ans, l’autre il y a 1 200 ans, c’est-à-dire, d’une part, dans les derniers siècles du 1er du millénaire avant notre ère et, d’autre part, à la fin du millénaire suivant.
Comme le donnent à entendre les sources méditerranéennes et comme le confirme la présence des pollens de cannabis, l’homme était présent dès le premier pic. Ensuite, c’est le développement de ses activités, culture sur brûlis et élevage, qui l'a amené à modifier l’environnement.

Irie !
 
Last edited:

mriko

Green Mujaheed
Veteran
Damn, I lost all the links I found ! groan...

Göbekli Tepe is so fascinating indeed, and only a small part have been excavated, so lots of things remain to be discovered there, and also in other areas in Turkey, some being under threat of simple destruction because of some darn dam the gov want to built. They gonna wipe out a whole page of Humanity's history...

Irie !
 

SOTF420

Humble Human, Freedom Fighter, Cannabis Lover, Bre
ICMag Donor
Veteran
Sweet Tooth was the first & original cannabis type brought here by aliens :)




j/k awesome thread man, great read thank you :canabis:
 

dmt

Active member
Veteran
i know western history likes to keep india under wraps, but most argue the the "vedas" from prehistoric india may be at least 20,000 years old, arguably the most ancient known writing "that we are told about. they mention cannabis for all its purposes and to this day is worshipped as a god, and ally of shiva or incarnation, im not an expert. this is what ive researched, peace, d
 

dmt

Active member
Veteran
prehistoric texts from tibet as well praise the precious plant with all its glory for its purposes in all aspects of life, d
 

clorox

Smokin on that serious...
the vedas arent from "prehistoric" india, and they sure as hell aren't 20k years old... more like 3 - 4 thousand years old. Not trying to hate, just squash some misinformation.
 

IWanaGetHiSoHi

Active member
Durga found cannabis in the hills at the foot of the Himalayas and gave it to her hubby in hopes of quenching his thirst for the flesh (sexual contact) of mortal women.
 

dmt

Active member
Veteran
the vedas arent from "prehistoric" india, and they sure as hell aren't 20k years old... more like 3 - 4 thousand years old. Not trying to hate, just squash some misinformation.

the real truth is know one knows.

the ancient hindus followed a 26,000 year cycle like the egyptians, babylonians and mayas to name a few.

the rig veda, if seen thru precessional eyes, goes way back before the british rewrote the history of india.

i just brought it up because i watched o ton of indian docs over last week. and contrary to emprial doctrine, india is the home for most mathmatics, mysticism and spirituality that europe and the west thank greece for.

they had aquaducts, plumbing and hot cold water before epypt was egypt.

the vedas also talk about cars, motor boats space ship and planes.

it depends and where u get yer info, whom to trust and refernce material. if the bible or a highschool doctrine is the base for conciousness, then this is a redundant post, ), peace, d
 

Latest posts

Latest posts

Top