No announcement yet.

Fermented plant extracts

  • Filter
  • Time
  • Show
Clear All
new posts

    Fermented plant extracts

    Most of the vegan nutrient lines out there are mainly comprised of fermented plant extracts. I assume these are derived from various plants and combinations of plants that give their N-P-K values.

    I was gifted a list in a thread a while back with a huge list of plants, various elements and veggies with their respected nutrient values. Can this list help inform us as to how we can make our own fermented extracts??

    How many of you guys can help fill in some blanks about this subject??

    JK....thanks again for the inspiration...

    Here is the list I am talking about:

    Alfalfa Hay: 2.45/05/2.1
    Apple Fruit: 0.05/0.02/0.1
    Apple Leaves: 1.0/0.15/0.4
    Apple Pomace: 0.2/0.02/0.15
    Apple skins(ash) : 0/3.0/11/74
    Banana Residues (ash): 1.75/0.75/0.5
    Barley (grain): 0/0/0.5
    Barley (straw): 0/0/1.0
    Basalt Rock: 0/0/1.5
    Bat Guano: 5.0-8.0/4.0-5.0/1.0
    Beans, garden(seed and hull): 0.25/0.08/03
    Beet Wastes: 0.4/0.4/0.7-4.1
    Blood meal: 15.0/0/0
    Bone Black: 1.5/0/0
    Bonemeal (raw): 3.3-4.1/21.0/0.2
    Bonemeal (steamed): 1.6-2.5/21.0/0.2
    Brewery Wastes (wet): 1.0/0.5/0.05
    Buckwheat straw: 0/0/2.0
    Cantaloupe Rinds (ash): 0/9.77/12.0
    Castor pomace: 4.0-6.6/1.0-2.0/1.0-2.0
    Cattail reeds and water lily stems: 2.0/0.8/3.4
    Cattail Seed: 0.98/0.25/0.1
    Cattle Manure (fresh): 0.29/0.25/0.1
    Cherry Leaves: 0.6/0/0.7
    Chicken Manure (fresh): 1.6/1.0-1.5/0.6-1.0
    Clover: 2/0/0/0 (also contains calcium)
    Cocoa Shell Dust: 1.0/1.5/1.7 Coffee Grounds: 2.0/0.36/0.67
    Corn (grain): 1.65/0.65/0.4
    Corn (green forage): 0.4/0.13/0.33
    Corn cobs: 0/0/2.0
    Corn Silage: 0.42/0/0
    Cornstalks: 0.75/0/0.8
    Cottonseed hulls (ash): 0/8.7/23.9Cottonseed Meal: 7.0/2.0-3.0/1.8
    Cotton Wastes (factory): 1.32/0.45/0.36
    Cowpea Hay: 3.0/0/2.3
    Cowpeas (green forage): 0.45/0.12/0.45
    Cowpeas (seed): 3.1/1.0/1.2
    Crabgrass (green): 0.66/0.19/0.71
    Crabs (dried, ground): 10.0/0/0 (I personally just crush the shells with my foot)
    Crabs (fresh): 5.0/3.6/0.2
    Cucumber Skins (ash): 0/11.28/27.2 ( WOW!!!! Who knew???)
    Dried Blood: 10.0-14.0/1.0-5.0/0
    Duck Manure (fresh): 1.12/1.44/0.6
    Eggs: 2.25/0.4/0.15
    Eggshells: 1.19/0.38/0.14
    Feathers: 15.3/0/0
    Felt Wastes: 14.0/0/1.0
    Field Beans (seed): 4.0/1.2/1.3
    Feild Beans (shells): 1.7/0.3/1.3
    Fish (dried, ground): 8.0/7.0/0
    Fish Scraps (fresh): 6.5/3.75/0
    Gluten Meal: 6.4/0/0
    Granite Dust: 0/0/3.0-5.5
    Grapefruit Skins (ash): 0/3.6/30.6 (And people throw these things away? Wow!)
    Grape Leaves: 0.45/0.1/0.4
    Grape Pomace: 1.0/0.07/0.3
    Grass (imature): 1.0/0/1.2
    Greensand: 0/1.5/7.0
    Hair: 14/0/0/0
    Hoof and Horn Meal: 12.5/2.0/0
    Horse Manure (fresh): 0.44/0.35/0.3
    Incinerator Ash: 0.24/5.15/2.33
    Jellyfish (dried): 4.6/0/0
    Kentucky Bluegrass (green): 0.66/0.19/0.71
    Kentucky Bluegrass (hay): 1.2/0.4/2.0
    Leather Dust: 11.0/0/0
    Lemon Culls: 0.15/0.06/0.26
    Lemon Skins (ash): 06.33/1.0
    Lobster Refuse: 4.5/3.5/0
    Milk: 0.5/0.3/0.18
    Millet Hay: 1.2/0/3.2
    Molasses Residue
    (From alcohol manufacture): 0.7/0/5.32
    Molasses Waste
    (From Sugar refining): 0/0/3.0-4.0
    Mud (fresh water): 1.37/0.26/0.22
    Mud (harbour): 0.99/0.77/0.05
    Mud (salt): 0.4.0/0
    Mussels: 1.0/0.12/0.13
    Nutshells: 2.5/0/0
    Oak Leaves: 0.8/0.35/0.2
    Oats (grain): 2.0/0.8/0.6
    Oats (green fodder): 0.49/0/0
    Oat straw: 0/0/1.5
    Olive Pomace: 1.15/0.78/1.3
    Orange Culls: 0.2/0.13/0.21
    Orange Skins: 0/3.0/27.0 (Right up there with Grapefruit. Note: both can attract fruit flies so, bury them in the compost)
    Oyster Shells: 0.36/0/0
    Peach Leaves: 0.9/0.15/0.6
    Pea forage: 1.5-2.5/0/1.4
    Peanuts (seed/kernals): 3.6/0.7/0.45
    Peanut Shells: 3.6/0.15/0.5 (I grind them up in the food processor first)
    Pea Pods (ash): 0/3.0/9.0 (I cut them up with a pair of scissors while shelling them)
    Pea (vines): 0.25/0/0.7
    Pear Leaves: 0.7/0/0.4
    Pigeon manure (fresh): 4.19/2.24/1.0
    Pigweed (rough): 0.6/0.1/0
    Pine Needles: 0.5/0.12/0.03
    Potato Skins (ash): 0/5.18/27.5
    Potaote Tubers: 0.35/0.15/2.5
    Potatoe Vines (dried): 0.6/0.16/1.6
    Prune Refuse: 0.18/0.07/0.31
    Pumpkins (fresh): 0.16/0.07/0.26
    Rabbitbrush (ash): 0/0/13.04
    Rabbit Manure: 2.4/1.4/0.6
    Ragweed: 0.76/0.26/0
    Rapeseed meal: 0/1.0=2.0/1.0=3.0
    Raspberry leaves: 1.45/0/0.6
    Red clover hay: 2.1/0.6/2.1
    Redrop Hay: 1.2/0.35/1.0
    Rock and Mussel Deposits
    From Ocean: 0.22/0.09/1.78
    Roses (flowers): 0.3/0.1/0.4
    Rye Straw: 0/0/1.0
    Salt March Hay: 1.1/0.25/0.75
    Sardine Scrap: 8.0/7.1/0
    Seaweed (dried): 1.1-1.5/0.75/4.9 (Seaweed is loaded with micronutrients including: Boron, Iodine, Magnesium and so on.)
    Seaweed (fresh): 0.2-0.4/0/0
    Sheep and Goat Manure (fresh): 0.55/0.6/0.3
    Shoddy and Felt: 8.0/0/0
    Shrimp Heads (dried): 7.8/4.2/0
    Shrimp Wastes: 2.9/10.0/0
    Siftings From Oyster Shell Mounds: 0.36/10.38/0.09
    Silk Mill Wastes: 8.0/1.14/1.0
    Silkworm Cocoons:10.0/1.82/1.08
    Sludge: 2.0/1.9/0.3
    Sludge (activated): 5.0/2.5-4.0/0.6
    Smokehouse/Firepit Ash:0/0/4.96 (I put the ashes from my smoker in the pile)
    Sorghum Straw:0/0/1.0
    Soybean Hay: 1.5-3.0/0/1.2-2.3
    Starfish: 1.8/0.2/0.25
    Sugar Wastes (raw): 2.0/8.0/0
    Sweet Potatoes: 0.25/0.1/0.5
    Swine Manure (fresh): 0.6/0.45/0.5
    Tanbark Ash: 0/0.34/3.8
    Tanbark Ash (spent): 0/1.75/2.0
    Tankage: 3.0-11.0/2.0-5.0/0
    Tea Grounds: 4.15/0.62/0.4
    Timothy Hay: 1.2/0.55/1.4
    Tobacco Leaves: 4.0/0.5/6.0
    Tobacco Stems: 2.5-3.7/0.6-0.9/4.5-7.0
    Tomatoe Fruit: 0.2/0.07/0.35 (A note on tomatoe fruit: These should be hot composted. I just let any rotted or insect eaten tomatoes compost in the soil beneath the plants and have "freebees" come back each consecutive year. Hot composting will kill the seeds.)
    Tomatoe Leaves: 0.35/0.1/0.4
    Tomatoe Stalks: 0.35/0.1/0.5
    Tung Oil Pumace: 6.1/0/0
    Vetch Hay: 2.8/0/2.3
    Waste Silt: 9.5/0/0
    Wheat Bran: 2.4/2.9/1.6
    Wheat (grain): 2.0/0.85/0.5
    Wheat Straw: 0.5/0.15/0.8
    White Clover (Green): 0.5/0.2/0.3
    Winter Rye Hay: 0/0/1.0
    Wood Ash: 0/1.0-2.0/6.0-10.0 (A note on Wood ash: Wood Ash can contain chemicals that could harm plants and also carcinogens so, they should be composted in moderation)
    Wool Wastes: 3.5-6.0/2.0-4.0/1.0-3.5
    "It is better to be inspirated then educated as you can still be a damn fool with an education".

    crazy artical I just found....A little hard to decipher some of it but it kinda points me in the direction of where I want to go with this.....

    How to make EM-FPE (Fermented Plant Extract)
    For centuries extracts have been used as elixirs for all sorts of ailments. Individuals would seek out certain plant materials that were known for their beneficial properties and ferment them to extract the desired benefits. This same technology can be used to extract properties from plants such as geranium to make a citronella extra for keeping away mosquitoes. Hot peppers and garlic are also known for their pest-deterring properties. If you incorporate companion planting (basil with tomato), you may find a winning combination to give the effect you want.

    Weeds and other green material can be recycled into an organic foliar spray and insect repellent. During fermentation EM-1 is able to ferment weeds and extract organic acids, bio-active substances, minerals, and other useful organic compounds from these materials which are able to promote plant growth and repel diseases or insects.

    What you will need:

    A clean airtight plastic container, bucket or large tank with lid*
    Sugar Cane Molasses
    Water (use good water, preferably activated with EM-X ceramics)
    Chopped, fresh weeds & herbs
    Gauze or cloth for filtering
    A measuring cup and large spoon for stirring
    pH paper to check pH
    Fermentation aids include a non-metallic heating rod and a airlock.

    *Please wash container thoroughly and do not use a glass container to avoid rupturing the container caused by gas production during the fermentation process.



    5 % EM-1
    5 % Sugar cane molasses
    45 % Fresh, chopped plant material like weeds & herbs
    45 % Water


    Example to make a 20 litre bucket of EM-FPE:

    1 l EM-1 (you must use EM-1, don't use EM-A!)
    1 l Sugar cane molasses
    9 l Water (use good water, preferably activated with EM-X ceramics)
    9 l (1-2kg) Fresh, chopped plant material like weeds & herbs**


    If you need different amounts of EM-FPE, use our EM-FPE Calculator



    Cut fresh weeds and chop up well (2-5 cm pieces)
    Put chopped weeds into bucket
    Fill the molasses with some hot water (approx. 60-80°C) and the remaining water (total approx. 40°C) into the plastic bucket
    Add the EM-1 to the mix
    Cover the top of bucket with black plastic bag and press down the lid on it
    Put weight on the lid. Take care to push out extra air from the bucket
    Store bucket in a warm place (20-35 °C), away from direct Sunlight
    Fermentation begins, gas is generated within 2-5 days, depending on temp
    Stir the weeds in the bucket regularly to release the gas
    The EM-FPE is ready for use when pH of solution is below 3.5 (this should take between 7-10 days). Put EM-FPE into plastic bottles after removing weeds by filtration with gauze or cloth
    EM-FPE should be stored in a dark, cool place at uniform temperature, but not in a refrigerator or in bright sunlight
    Use EM-FPE within 3 months


    Spray on plants at 1:500 to 1:1000
    Spray on soil (to suppress disease) at 1:100 to 1:500
    ** use plants and herbs like: mugwort, artemisia, clover, nettle, camomile, borage, dandelion, vervain, sage, thyme, rose-leafs - you could also add a few garlic cloves and chili pods.
    "It is better to be inspirated then educated as you can still be a damn fool with an education".


      Found some more, this article has to be in the OFc by now but I found it elsewhere... The first half of the article is about a whole list of things we could start other threads about....The last half, well a 1/4 of it, is all about fermented extracts and their benefits....the internet is trippy......want info enter keywords...the MAtrix huh??

      Here it is:

      Lacto Bacilli

      One of the major workhorse beneficial indigenous microorganism used in natural farming is lacto bacilli. This particular beneficial microorganism is popularly used in composting that specifically arrest foul odors associated with anaerobic decomposition. Lactic acid bacteria thrive and feed on the ammonia released in the decomposition normally associated with foul odors. So if you need to decompose or ferment wastes less foul odors, lactic acid bacteria is the specific bacteria to use. Its application in organic farming is enormous. In aquaculture, one of the problem is related to water quality. Poor water quality stresses the fish which in turn stunts their growth and affects their health. This is very evident specially on high density and tank aquaculture. The ammonia produced through fish excretions pollute the water and stress the fish. With regular addition of this beneficial microorganisms to the water, this ammonia problem is minimized, if not fully arrested. It helps hasten or complete the denitrification or converting wastes into forms not harmful to fish.

      Spraying diluted solution of lactic acid bacteria serum to the plant and soil helps plant growth and makes them more healthy. As it is applied to the soil or the leaves, these beneficial bacteria aid in the decomposition process, thus allowing more food to be available and assimilated by the plant.

      Lactic acid bacteria is also known to produce enzymes and natural antibiotics aiding effective digestion and has antibacterial properties, including control of salmonella and e. coli. To farmers, what are observed are the general health of the plants and animals, better nutrient assimilation, feed conversion and certain toxins eliminations.

      Here’s a simple method of collecting this type of microorganism. Lactic acid bacteria can be collected from the air. Pour rice wash (solution generated when you wash the rice with water) on a container like plastic pot with lid. Allow air gap at least 50-75% of the container. The key here is the air space. Cover the (not vacuum tight, allowing air still to move into the container) container with lid loosely. Put the container in a quiet area with no direct sunlight. Allow the rice was to ferment for at least 5-7 days. Lactic acid bacteria will gather in 5-7 days when temperature is 20-25 degrees C. Rice bran will be separated and float in the liquid, like a thin film, smelling sour. Strain and simply get the liquid. Put this liquid in a bigger container and pour ten parts milk. The original liquid has been infected with different type of microbes including lacto bacilli. And in order to get the pure lacto bacilli, saturation of milk will eliminate the other microorganisms and the pure lacto bacilli will be left. You may use skim or powdered milk, although fresh milk is best. In 5-7 days, carbohydrate, protein and fat will float leaving yellow liquid (serum), which contain the lactic acid bacteria. You can dispose the coagulated carbohydrate, protein and fat, add them to your compost pile or feed them to your animals. The pure lactic acid bacteria serum can be stored in the refrigerator or simply add equal amount of crude sugar (dilute with 1/3 water) or molasses. Do not use refined sugar as they are chemically bleached and may affect the lactic acid bacteria. The sugar or molasses will keep the lactic acid bacteria alive at room temperature. One to one ratio is suggested although sugar, regardless of quantity is meant simply, serving as food for the bacteria to keep them alive. Now, these lactic acid bacteria serum with sugar or molasses will be your pure culture. To use, you can dilute this pure culture with 20 parts water. Make sure water is not chemically treated with, like chlorine. Remember, we are dealing with live microorganisms and chlorine can kill them. This diluted form 1:20 ratio will be your basic lactic acid bacteria concoction. Two to four tablespoons added to water of one gallon can be used as your basic spray and can be added to water and feeds of animals. For bigger animals, the 2-4 tablespoons of this diluted lactic acid bacteria serum should be used without diluting it further with water. Lactic acid bacteria serum can be applied to plant leaves to fortify phyllosphere microbes, to soil and compost. Of course, it will help improve digestion and nutrient assimilation for animals and other applications mentioned before. For any kind of imbalance, be it in the soil or digestive system, lacto bacilli can be of help.

      One of the popular beneficial microorganism innoculant sfrom Japan (EM) contains lactic acid bacteria as its major component, including photosynthetic bacteria, yeasts, actinomycetes and fermenting fungi. These are pure culture imported from Japan and can be subcultured through the use of sugar or molasses. These other microbes can be cultured in several ways by farmers themselves.

      Forest Beneficial Microorganisms

      One technique in culturing other beneficial microorganism is getting them fro your local aged forest. One way is finding a healthy old robust tree in your local forest. Check the humus litter around the tree. The tree should have accumulated real deep humus, litter, compost of at least 2 feet to 1 yard deep. In this area through observation, we can deduce that soil fertility and microbial biodiversity are high. Our goal is to trap and culture these diversed, aged beneficial indigenous microorganisms. The technique that we use in trapping these microorganisms is the use of carbohydrate like cooked rice. Microorganisms will be attracted to food. So generally, what we do is to put the cooked rice on a flatter container with lid. For example, you can use a plastic lunch box and add about an inch of cooked rice allowing air space in the container. What is important here is a larger area to trap those microorganisms. It is suggested that you cover this container with metal netting or equivalent protecting it from animals like rats that may undig your container once you bury it in the litter, humus of your local forest. In 2-10 days (relative to temperature), you may undig your container and will notice contamination of microorganisms like white and other color molds on the cooked rice. The cooked rice has been infected now with microorganisms of your local forest. The next step is to add 1/3 amount of crude sugar or molasses to the infected cooked rice. After a week, the concoction will look like sticky, liquidy rice. You may then add equal amount of crude sugar or molasses to keep it for storage, arresting microbial activities, in a cooler area. To use, you may dilute this serum with 20 parts water. This diluted form shall then serve as your basic forest microorganisms. You may strain it and put in a container.

      Another version of trapping similar forest microorganisms is simply getting the litter, humus and spreading them sparingly to the top your cooked rice. Forest leaf molds can also be used. The same procedure will be followed as described in the culture of local forest microorganisms.

      Bamboo Microorganisms

      Another method of gathering microorganism is through burying your container with cooked rice on bamboo plants litter. Apparently, bamboo through observation and experience in the East, attracts powerful beneficial microorganisms as the roots of the bamboo exude sugary substances that attract beneficial microorganisms. The same procedure is followed as described before in its culture.

      Plant Specific Microorganisms

      An equal specific method is trapping beneficial microorganisms of specific plants you want to grow or growing. For example, if you want to trap and culture beneficial microorganisms from rice, you should then select healthy, vigorous rice plant, cut them and put inverted cooked rice container over the cut rice plant. Again, beneficial microorganisms specific to rice will be attracted to the cooked rice. You can use this technique to any other plant of choice and the same procedure of culture will be used as previously described.

      Rhizobium Nitrogen-Fixing Bacteria

      One of the most popular nitrogen-fixing bacteria is rhizobium. It is amazing that when we coat our legumes with these specific bacteria, legumes grow well and more nitrogen is fixed on the soil. Amazingly enough, basic culture of these beneficial bacteria is simple. Once we have seen those nodules created by the bacteria fixing nitrogen on the roots of the legumes, we can assume that there are lots of these rhizobia and nitrogen fixed. Just pull out the legumes plants on a very specific stage, especially towards their flowering/fruiting stage. A simple method of culture is simply get the soil with these leguminous bacteria and mix with crude sugar with equal ratio of crude sugar. Rhizobium bacteria will proliferate feeding on the sugar and thus can be mixed with your next batch of legume seeds for inoculation. Our concoction or recipe of beneficial indigenous microorganism (BIM) is 50% lactic acid bacteria and the rest is 50% of the other microorganisms cultured. So you may use 1part forest microorganism, 1 part bamboo microorganism and 1 part specific plant microorganism mixed with 3 parts or 50% lacto bacilli. The more diversed microbes, the better. However, we will still use 50% of the total beneficial indigenous microorganisms to be lactic acid bacteria. The rest you can experiment and make your own observations and formulations. I cannot really tell you specifically what microbes we get from the different sources we have mentioned. As a rule, I only use the above BIM for plants. For animals, I use just pure lacto bacilli for we have isolated this as described. We have used the bamboo microorganisms for fermenting feeds to be fed to animals.

      Different type of microorganisms thrive on different type of foods. As you can see, we use principally carbohydrates and sugars. But it will be equally important that we provide these beneficial indigenous microorganisms with other nutrients. In fact, we mix or add fermented plant extracts (fermented plant and fruit juices), ginger-garlic nutrients, brown rice vinegar and fish amino acid. That’s why in most instances, we mix these beneficial indigenous microorganisms with bionutrients to make it more effective.


      In the creation of biological nutrients, bionutrients, the basic process is the traditional fermentation. Fermentation process is a better system than simple extraction like boiling the plant materials, through infusion like making tea. In the United States, where compost tea is getting popular in organic agriculture, compost is made into tea, sugar or molasses are added, fermented to increase microbial population. A simple general formula or recipe in fermentation can be done for plants. For example, seaweeds. If you simply infuse seaweeds (which are quite difficult to breakdown, therefore hard to extract active ingredients), you may not get a more potent extracted active ingredients. If you ferment the same materials by adding sugar or molasses, it is easily broken down (biologically) by microorganisms and thus making nutrient more available. Microorganisms get their energy from sugar in fermenting the materials. Most healthy foods are fermented foods. Through fermentation, food are easily broken down, enzymes created, nutrition improved. That’s the reason why fermented foods like yogurt or kimchi (Korean pickles) are more nutritious than plain milk or vegetables.

      In making bionutrients, the simple formula is to add 1/3 crude sugar or molasses and mixed with materials to be fermented and extracted. For example, let’s take papaya fruit fermented extract. We chop as thinly as possible ripe papaya, unwashed and unpeeled. We then add 1/3 crude sugar or molasses to the total weight or approximate volume of the papaya materials. Put the materials with at least 50-75% air gap and cover loosely with a lid and let it ferment for at least a week. After a week, you will notice some molds and microbial infections and will start smelling sweet, sour and alcoholic. The materials are then strained and liquid generated will be your pure fruit papaya extract. You can dilute this with 20 parts water. This diluted form can be used as bionutrient, using 2-4 tablespoons per gallon of water. Again, this extract can be added to animal drinking water and feeds, to compost pile or sprayed/watered to plants leaves and roots. This will be a good source of nutrient for plants or animals, and also for our beneficial indigenous microorganisms. Papaya extract is good source of enzyme pappain, beta-carotene and Vitamin C for example. So extract any plant material and just try to find out what kind of nutrients they have you can use for animal and plant nutrition. Should the materials you intend to use for extraction do not have much moisture (as compared to our papaya fruit example), you may add water enough to the level that will moisten all the materials.

      Specific bionutrients, fermented plant and other material extracts we have used to a great success and you can adopt for their specific use:

      Kangkong (water spinach) Fermented Extract

      This is essentially used as growth promotant. Kangkong is sometimes called water spinach. It is a kind of vegetable that typically grows in fresh water. It can also grow in highly moist soil. It s basic characteristic is it grows very fast, similar to the rapid growth of kelp in the seas. To the natural farmers, this kind of plant or similar plant for that matter have natural growth promotant. In the scientific agricultural parlance, we speak of natural growth hormones like gibberellins, auxins and cytokinins. Plants that grow fast will have a better concentrations of these natural growth hormones. By observation, kangkong or kelp or even mugwort will fall on this category. Thus, axillary buds of kangkong, plants like cucumber, squash and watermelon will be good materials to ferment for this purpose. Once these are fermented, active ingredients extracted, you may use this to spray and/or water your plants. You will notice a great improvement in the growth of your plants.

      Banana-Squash-Papaya (BSP) Fermented Extract

      One of the major fermented extract we use for plant flowering and fruiting, specially for vegetables, are extracts from banana, squash and papaya. Apparently, these materials have high level of potassium especially banana, and beta carotene. Although I have not tried a similar recipe using materials readily available here in the US, I will presume that materials substitute can be used. For your own experimentation, you can possibly use comfrey, squash and carrot. Le me know if they will work. In the Philippines, when we induce flowering of mangoes, conventional agriculture use potassium nitrate. We have tried with success natural materials high in nitrogen and potassium. Interesting enough, our local organic farmers have experimented using seaweed extract in inducing flowering of mangoes. Isn’t it seaweed extract have lots of natural growth hormones and trace elements, and good source of nitrogen and potassium? Check out the kinds of materials you can ferment and use to induce growth, flowering and fruiting.

      Fish Amino Acid

      As a general rule, the higher the protein of the materials, when composted or fermented, the higher the nitrogen. We use a lot of fish scraps to generate high nitrogen on our fish extracts. Here in the US, fish emulsion is pretty popular. Again, on basic fermentation of this material, we use crude sugar or molasses, third ratio of the fish scraps. I personally like using molasses than crude sugar not just for cost considerations, but molasses minimizes those fishy odors. I have added lactic acid bacteria in fermenting these fish scraps that arrest the foul odors very evident of fish emulsion foliar fertilizers.

      Calcium Phosphate

      A lot of agriculture advisers have used calcium phosphate for better plant growth, health, pest and disease controls. Natural farmers use this bionutrient very specific. Under the theory of Nutrioperiodism developed by a Japanese horticulturist, Yasushi Inoue in the 1930’s, plants and animals need a very specific nutrient relative to the stage of their development. In the plant, there is the essential vegetative growth , changeover and the reproductive periods. In animals, like humans, there is the infantile, juvenile and adulthood. It is not only critical to provide the right nutrient at the right stage of the development, but also critical to use or apply specific nutrient of calcium phosphate in the juvenile or changeover period. For the plant, for example, we know that nitrogen is critical on the vegetative stage as potassium is critical in the flowering and fruiting stages. It is however, the changeover period that is most critical that will determine the quality of the final reproductive stage. At this stage, an additional nutrient is badly needed by the plant. And this is calcium phosphate. Calcium phosphate is good for plants’ “morning sickness”. It is the stage that additional baby needs to be fed or the process where flower/fruit is about to come. Ash made from soybean stems are excellent for this purpose.

      Here is a simple, natural method of generating calcium phosphate. Get eggshells and roast them enough to generate some good ashes. Afterwhich, dip these roasted eggshells on about equal visual volume of vinegar. Allow it to sit for a couple of weeks until eggshells are practically broken down by the vinegar acids. You may use this diluted 20 parts water and can be sprayed or watered to the plants during the changeover period.

      When this is applied to that changeover period, it will improve plant health and productivity. The use of calcium phosphate is important to natural farmers. This however, does not mean that we shall forget the nutrient timing application of other critical nutrients for plant growth both macro and micro nutrients, given at the right stages and combinations.

      We consider this very important bionutrient needed by the plants used by natural farmers.

      Ginger-Garlic Extract

      The original recipe of the natural farmers of Korea use not only the ginger and garlic materials, but also Chinese herbs like Angelica acutiloba, Glycurrhiza uralensis and Cinnamomum loureirii. These Chinese herbs have one basic common denominator, they are good for digestion. We have used simply equal amount of ginger and garlic, less these Chinese herbs. This is our natural antibiotics we use for plants and animals.

      Remember the high level of sulfur on garlic? It is a good fungicide. The ginger-garlic extract is quite different from the plant extracts we have discussed. We soak the chopped up ginger and garlic in beer or wine overnight or 12 hours. Then we add 1/3 crude sugar and let it ferment for a couple of days like 5-7 days. They we add alcohol which stabilizes and arrests fermentation. The alcohol should be at least 40% proof. The active ingredients of the ginger and garlic is extracted in finale with the use of alcohol similar to herbal tincture we are familiar with in homeopathy. Remember that ginger and garlic are highly medicinal and highly nutritious. We have used them as natural antibiotics and in preventive medicine. We have used this concoction on chicks and chickens and have made them healthy throughout. Of course, we also use them when we see animal weakening and when they are sick. We have used them on fungal problems of plants. We have used them for rheumatism. The uses are enormous both for plants and animals. The potency of your plant extracts are relative to active ingredients that are available from the plants you are extracting. Most importantly, the part of the plants. For example, the energy on the plant part is most concentrated on the seed, fruit, leaf and other parts of the plants, to that general order. Seed is where the plant procreate itself. By simply adding moisture and heat, seed will germinate and will derive its nutrient for growth from its own seed. What natural farmers are saying is that the energy or nutrition is more potent on the seed, fruit will be second and on the leaf third. That’s the reason why when we ferment seeds like grain, our dilution for use is 1:1000 instead of 1:500. This is just a guideline.

      Sometimes, you can use more diluted form but with more frequent applications. There is really no clear cut rule. Things have to be based on experimentations, experiences and observations.

      Designer Compost

      Improved, more potent, otherwise know as bokashi in Japan is essentially naturally fortified with macro and micro nutrients, or bionutrients and biodiversed beneficial indigenous microorganisms.

      Here is a typical recipe we use in the Philippines:
      - Rice Bran 10 kilos
      - Copra Meal 20 kilos
      - Coco Peat 20 kilos
      - Chicken Manure 30 kilos
      - Charcoal Dust 20 kilos
      - BIM* 1 liter
      - Molasses 1 kilo
      - Bionutrient 1 liter
      • Beneficial Indigenous Microorganism

      Similar recipe can be adopted here in the US, replacing or substituting similar materials above. A basic formulation that I use is very similar to the general formulation I use for animal feeds. Basic formulation consists of 80% carbohydrate, 17% protein and 3% Vitamin/Mineral. When we apply this formulation to our designer compost, we likewise find 80% carbon source, 17% nitrogen and 3% trace elements, as a matter of rule.

      For the rice bran, you can substitute wheat or any inexpensive grain bran. Our copra meal or the materials residue after extracting oil from coconut can be substituted with corn meal or inexpensive meal that has ample amount of protein. Soybean is a good substitute or any other legumes. Coco peat can be substituted with peat moss. I will probably use sawdust or any materials high in carbon and lignin. Any kind of grain hay can also be used. Any kind of animal manure can likewise be used. It is however ideal to use chicken manure because of its more potent ingredients as far as macro nutrients like nitrogen, phosphorous, potassium and calcium, not to mention its good source of micro nutrients. Charcoal dust is used for it is a basic carbon which natural farmers find a good media or substrate for proliferation of beneficial microorganisms. And of course, the use of molasses (as sugar source) that really improve the population of microorganisms since it is a basic food source for them. Bionutrient will be a concoction of high level of macro and micro nutrients. Depending on your goal, like higher level of potassium for example, we kind of emphasize our bionutrient with fermented extract high in potassium. Likewise, if your intention is to have a more potent level of nitrogen, our bionutrient shall emphasize high level of nitrogen source like fish emulsion or plant leguminous extract. You can likewise add and ferment rock dusts. The general key however, in this designer compost formulation or bokashi is potent biodiversed beneficial indigenous microorganisms and bionutrients. You may adjust this basic recipe relative to your requirements and observations. When you try to analyze our Philippine basic recipe, you will notice that it is pretty much satisfying the general formulation I have mentioned as to carbohydrate-carbon, protein-nitrogen and vitamin / mineral - micronutrients ratios. The real key to this recipe is providing a greater population of biodiversed beneficial indigenous microorganisms and bionutrients, with lots of carbon and organic matter. I bet you, it will make also good compost tea.

      I have deliberately included this bokashi in this presentation to show that we natural farmers consider beneficial indigenous microorganisms and bionutrients of great importance for soil fertility and animal health. As we establish a healthy fertile soil, we observe healthy plants, animals, community and planet. Living soil is dependent on biodiversed microbial populations and nutrients that create a stable, balance and harmonious soil that determines healthy plants and animals. As we “farm with air, water and sunlight”, and nutrient, we likewise farm with microorganisms vital to soil fertility.

      As sustainable agriculture is based on soil fertility to perpetually sustain production, so is soil fertility is determined by diversity and balance of microbial ecologies.
      Last edited by sophisto; 07-16-2008, 12:53.
      "It is better to be inspirated then educated as you can still be a damn fool with an education".


        What we need is the recipe for EM 1. Reverse engineers go!
        I'm in it for the tomatoes. I been growing tomatoes for a long long time. Sometimes I get to thinking I know everything about tomatoes.
        My tomatoes make me completely delusional.


          Originally posted by MrFista
          What we need is the recipe for EM 1. Reverse engineers go!

          LOL....I know that threw me off too..Sounds organic though...Uhhh?? maybe??
          "It is better to be inspirated then educated as you can still be a damn fool with an education".


            What we need is the recipe for EM 1. Reverse engineers go!
            we just need it cheap like thaiphoon. its at least 1/4 the price it is here.

            fpe's are great. i make them from nettle, yarrow, dandelion, chamomile, comfrey, and im experimenting with a few random plants.

            yarrow and nettle go very well together. very well. and they grow them selfs like a vigorous weed.

            the best part about this is its dirt cheap, full of beneficial microbes and nutrients and can be made easily.
            “Everything is written in the book of nature. This book is always open.” sepp holzer


              I am really stoked about this concept....

              I really like the concept of Canna's Bio line. In the fact that I had never heard of fermented plant extracts... Looking at some of the info in the last article it seems makin my own is not far from reality....

              JK already is, figures.... who else has gone down this road before care to share a recipe

              I am already thinking of giving this a go for fun: As per instructions above,

              1 gallon jug
              -1/3 cup mix of chopped cucumber skins and cantelope rinds
              -1/3 cup of molasses
              strain after 5-7 days
              dilute 20 to 1 with water
              add another 1/3 cup of molasses...

              Seems like it will be a nice P K booster for middle of flower....I will use it at 2 tbsp per gallon........ What do you guys think ???
              "It is better to be inspirated then educated as you can still be a damn fool with an education".


                lol, of course ive tried it already, lots of fermentation fun cant let that pass by.

                one thing, ive never used chunks of anything, food for example. ive only used plant matter, which is easily broken down/and nutrients extracted.

                i also always add lacto B for smell control and decomposition.

                let us know how it works.
                “Everything is written in the book of nature. This book is always open.” sepp holzer


                  I definitely will....YEh I thought the part in the article that mentioned LActo B was really interesting...Especially for trying to create fish fermentations etc.....

                  Quoted here :

                  "As a general rule, the higher the protein of the materials, when composted or fermented, the higher the nitrogen. We use a lot of fish scraps to generate high nitrogen on our fish extracts. Here in the US, fish emulsion is pretty popular. Again, on basic fermentation of this material, we use crude sugar or molasses, third ratio of the fish scraps. I personally like using molasses than crude sugar not just for cost considerations, but molasses minimizes those fishy odors. I have added lactic acid bacteria in fermenting these fish scraps that arrest the foul odors very evident of fish emulsion foliar fertilizers. "

                  Organics is awesome....
                  "It is better to be inspirated then educated as you can still be a damn fool with an education".


                    lacto b. is one of MANY beneficial organisms out there, some we know some we dont.

                    i just started two more right now, i would upload pics but its not letting me. says it uploaded them, then nothing..... i started yarrow and dandelion.

                    dandelion has
                    Dandelion (Taraxacum officinale) is a common herb related to the sunflower family. The name Dandelion comes from the French 'dents de lion', meaning lion's teeth, to describe the jagged leaves. We often pay them little attention until they're taking over our lawns, yet they are full of nutrients and healing properties. For starters, the chemical and nutrient content of young dandelion leaves includes; potassium, gluten, magnesium, niacin, calcium, phosphorus, proteins, resin, iron, sulphur, zinc, vitamins B1, B2, B6, B12, C and E. The leaves are a richer source of vitamin A than carrots!
                    if you can get EM1, for a decent price or are willing to pay the price, it is EXCELLENT at doing things like this, i think thaiphoon was experimenting with the em and fpe's and other things.

                    my way is just the cheap method that has given me very good results on a number of different plants, also you have to take into account the plant you use. yarrow is a VERY beneficial plant. even when its not used to grow cannabis. nettles and dandelions are also beneficial plants. i wouldnt go out and try it on anything, as there is a possibility of creating some nasties with certain plants im guessing. the concentration of beneficial microbes probly helps fight that, but like with all experiments, experiment with caution.

                    one thing ive also noticed is the first time i did this i used yarrow, and it was dried yarrow that had been sitting for months. and it still produced equal results to the ones i make now with fresh material. so i see growing all the yarrow, or nettles, etc you need for a year or at least a few months in even the very short outdoor seasons, dry it and have free nutes for a while.

                    still lots of experimenting to do.
                    “Everything is written in the book of nature. This book is always open.” sepp holzer


                      What is EM 1 exactly ???

                      I made a presumptuos statement thinking it wasnt organic but maybe it is ??? Sure doesnt sound organic....

                      Also JK what does the recipe for the fermentation you just started look like as far as quantities....

                      Also once fermented plant extracts are made about how long can they stay good for later use????

                      Another question would be has anyone ever thought of throwing these into teas and bubbling them with food sources to multiply the microherd ????
                      Last edited by sophisto; 07-17-2008, 13:49.
                      "It is better to be inspirated then educated as you can still be a damn fool with an education".


                        Hey! EM is all I use. I make bokashi from Elephant poo, cow poo, and bat poo too. I make FPE and EM-5. Alternating the spraying helps keeps the mites down.

                        The EM brews last about a month here...but if kept cooler I think some can last 6 months...the smell will let you know if its alright. I find that bad smell = bad stuff. The bad stuff just gets tossed into the compost pile.

                        Looks like you found all the EM recipes. Good luck with them! jay is right about it being cheap here. I found an even cheaper store the other day. 1 litre of EM from Japan for 79 baht (about 2 usd)

                        These EM mixes don't need to be a part of an aerated tea. I have never felt the need to try, I do sometimes throw the bits of fermented leaves into the "water dechlorinating" tub harm.



                          So your the thaiphoon every body keeps talking about.....Whats up brother.... Thanks for chiming in.

                          Well I still need some clarification....For instance FPE = Fermented plant extract
                          EM = ??
                          "It is better to be inspirated then educated as you can still be a damn fool with an education".


                            hey sophisto, EM is effective microorganisms.

                            heres some info on it

                            i havent done any testing to see how long they last, but litterly it takes 2-3 days to make it. and you can store the dry material for quite some time. so really its pretty simple and can be made all year around. i use the fpe's as fresh as possible.

                            i have not tried adding some to teas, but i did add nettle fpe and yarrow fpe to my bio cultivator. no bad effects.

                            TP!!!!!! good to see ya man! 2 bucks HOLY CRAP..... i hate you lol. 48$ mark up here, 50$ plus tax?!?!?!?!!?!
                            “Everything is written in the book of nature. This book is always open.” sepp holzer


                              FPE's - nice to have a name for my brews!

                              I'll document on the other site this place is too big I introduce new subjects to help organic heads and it's buried in - is bla bla (product) good - and - hows my tea - threads...
                              I'm in it for the tomatoes. I been growing tomatoes for a long long time. Sometimes I get to thinking I know everything about tomatoes.
                              My tomatoes make me completely delusional.