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Abstract Cannabis sativa L. is an annual dioecious

plant from Central Asia. Cannabinoids, flavonoids,

stilbenoids, terpenoids, alkaloids and lignans are

some of the secondary metabolites present in

C. sativa. Earlier reviews were focused on isolation

and identification of more than 480 chemical com-

pounds; this review deals with the biosynthesis of the

secondary metabolites present in this plant. Cannab-

inoid biosynthesis and some closely related pathways

that involve the same precursors are disscused.

Keywords Alkaloids � Cannabinoid biosynthesis �
Flavones and flavonols � Lignan group �
Stilbenes

Introduction

Cannabis is an annual plant, which belongs to the

family Cannabaceae. There are only 2 genera in this

family: Cannabis and Humulus. While in Humulus

only one species is recognized, namely lupulus, in

Cannabis different opinions support the concepts for

a mono or poly species genus.

Linnaeus (1753) considered only one species,

sativa; however, McPartland et al. (2000) described

4 species, sativa, indica, ruderalis and afghanica; and

Hillig (2005) proposed 7 putative taxa, ruderalis,

sativa ssp. sativa, sativa ssp. spontanea, indica ssp.

kafiristanica, indica ssp. indica, indica ssp. afghanica

and indica ssp. chinensis. Nevertheless, the tendency

in literature is to refer to all types of cannabis as

Cannabis sativa L. with a variety name indicating the

characteristics of the plant.

The cultivation of this plant, native from Central

Asia, and its use has been spread all over the world by

man since thousands of years as a source of food,

energy, fiber and medicinal or narcotic preparations

(Wills 1998; Russo 2004; Jiang et al. 2006).

Cannabis is a dioecious plant, i.e. it bears male and

female flowers on separate plants. The male plant

bears staminate flowers and the female plant pistillate

flowers which eventually develop into the fruit and

achenes (seeds). The sole function of male plants is to

pollinate the females. Generally, the male plants

commence flowering slightly before the females.

During a few weeks the males produce abundant

anthers that split open, enabling passing air currents

to transfer the released pollen to the pistillate flowers.

Soon after pollination, male plants wither and die,

leaving the females maximum space, nutrients and

water to produce a healthy crop of viable seeds. As

result of special breeding, monoecious plants bearing

both male and female flowers arose frequently in

varieties developed for fiber production. The pistillate
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flowers consist of an ovary surrounded by a calyx

with 2 pistils which trap passing pollen (Clarke 1981;

Raman 1998). Each calyx is covered with glandular

hairs (glandular trichomes), a highly specialized

secretory tissue (Werker 2000). In cannabis, these

glandular trichomes are also present on bracts, leaves

and on the underside of the anther lobes from male

flowers (Mahlberg et al. 1984).

Secondary metabolites of cannabis

The phytochemistry in cannabis is very complex; more

than 480 compounds have been identified (ElSohly and

Slade 2005) representing different chemical classes.

Some belong to primary metabolism, e.g. amino acids,

fatty acids and steroids, while cannabinoids, flavo-

noids, stilbenoids, terpenoids, lignans and alkaloids

represent secondary metabolites. The concentrations

of these compounds depend on tissue type, age, variety,

growth conditions (nutrition, humidity and light lev-

els), harvest time and storage conditions (Kushima

et al. 1980; Roos et al. 1996; Keller et al. 2001). The

production of cannabinoids increases in plants under

stress (Pate 1999). Ecological interactions have also

been reported (McPartland et al. 2000). Feeding

studies in grasshoppers indicated that minimum

amounts of cannabinoids are stored in their exoskel-

etons being excreted in their frass (Rothschild et al.

1977); although a neurotoxic activity was reported in

midge larvaes using cannabis leaf extracts (Roy and

Dutta 2003).

Cannabinoids

This group represents the most studied compounds

from cannabis. The term cannabinoid is given to the

terpenophenolic compounds with 22 carbons (or 21

carbons for neutral form) of which 70 have been

found so far and which can be divided into 10 main

structural types (Fig. 1). All other compounds that do

not fit into the main types are grouped as miscella-

neous (Fig. 2). The neutral compounds are formed by

decarboxylation of the unstable corresponding acids.

Although decarboxylation occurs in the living plant,

it increases during storage after harvesting, especially

at elevated temperatures. Both forms are also further

degraded into secondary products by the effects of

temperature, light (Lewis and Turner 1978) and auto-

oxidation (Razdan et al. 1972).

In cannabis, the most prevalent compounds are

D9-THC acid, CBD acid and CBN acid, followed by

CBG acid, CBC acid and CBND acid, while the

others are minor compounds. The psychotropic

activities of cannabinoids are well known (Paton

and Pertwee 1973; Ranganathan and D’Souza 2006);

however, in clinical studies, in vitro and in vivo,

some other pharmacological effects of cannabinoids

are observed such as antinociceptive, antiepileptic,

cardiovascular, immunosuppressive (Ameri 1999),

antiemetic, appetite stimulation (Mechoulam and Ben

Shabat 1999), antineoplastic (Carchman et al. 1976;

Massi et al. 2004), antimicrobial (ElSohly et al.

1982), anti-inflammatory (Formukong et al. 1988),

neuroprotective antioxidants (Hampson et al. 1998)

and positive effects in psychiatric syndromes, such as

depression, anxiety and sleep disorders (Grotenher-

men 2002; Musty 2004). These effects could be due

to the agonistic nature of these compounds with

respect to the cannabinoid CB1- and CB2-receptors

(Matsuda et al. 1990; Munro et al. 1993) which

compete with endocannabinoids (Mechoulam et al.

1998), a family of cannabinoid receptor ligands

participating in modulation of neurohumoral activity

(Giuffrida et al. 1999; Velasco et al. 2005; Di Marzo

et al. 2007). Some therapeutic applications from

cannabis, cannabinoids, cannabinoid analogs and

CB receptor agonist/antagonist are shown in Table 1.

Cannabinoid biosynthesis

Histochemical (André and Vercruysse 1976; Petri

et al. 1988), immunochemical (Kim and Mahlberg

1997) and chemical (Lanyon et al. 1981) studies have

confirmed that glandular hairs are the main site of

cannabinoid production, although they have also been

detected in stem, pollen, seeds and roots by immu-

noassays (Tanaka and Shoyama 1999) and chemical

analysis (Ross et al. 2000; Potter 2004).

The precursors of cannabinoids are synthesized

from 2 pathways, the polyketide pathway (Shoyama

et al. 1975) and the deoxyxylulose phosphate/methyl-

erythritol phosphate (DOXP/MEP) pathway (Feller-

meier et al. 2001) (Fig. 3). From the polyketide

pathway, olivetolic acid is derived and from the

DOXP/MEP pathway, geranyl diphosphate (GPP) is
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derived. Both are condensed by the prenylase geranyl

diphosphate:olivetolate geranyltransferase (GOT)

(Fellermeier and Zenk 1998) to form cannabigerolic

acid (CBGA), which is a common substrate for three

oxydocyclases: Cannabidiolic acid synthase (Taura

et al. 1996), D9-Tetrahydrocannabinolic acid syn-

thase (Taura et al. 1995a) and Cannabichromenic

acid synthase (Morimoto et al. 1998), forming can-

nabidiolic acid (CBDA), D9-tetrahydrocannabinolic

acid (D9-THCA) and cannabichromenic acid

(CBCA), respectively (Morimoto et al. 1999).

It is known that prenyltransferases condense an

acceptor isoprenoid or non-isoprenoid molecule to

an allylic diphosphate and depending on their

specificities these prenyltransferases yield linear

trans- or cis-prenyl diphosphates (Bouvier et al.

2005). From in vitro assays it was observed that

GOT could accept neryl diphosphate (NPP), the

isomer of GPP which is formed by an isomerase

(Shine and Loomis 1974), as a substrate forming

cannabinerolic acid (trans-CBGA) (Fellermeier and

Zenk 1998); this isomer of CBGA could be

transformed to CBDA by a CBDA synthase (Taura

et al. 1996). The presence of trans-CBGA in

cannabis has been shown (Taura et al. 1995b).

Probably, more than one enzymatic isoform coexist.

It is known that depending on its degree of

connectivity within the metabolic network, multiple

isoforms of the same enzyme could preserve the

integrity of the metabolic network; e.g. in the face

of mutation. It has also been suggested that different

organizations or associations from isoforms of the

key biosynthetic enzymes into a metabolon, a

complex of sequential metabolic enzymes, could

be differentially regulated (Jorgensen et al. 2005;

Sweetlove and Fernie 2005).
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Fig. 1 Cannabinoid structural types
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In Table 2, some characteristics of the studied

enzymes from the cannabinoid route are shown. The

gene that encodes the enzyme THCA synthase has

been cloned (Sirikantaramas et al. 2004) and consists

of a 1635-bp open reading frame, which encodes a

polypeptide of 545 amino acids. The expressed

protein revealed that the reaction is FAD–dependent

and the binding of a FAD molecule to the histidine-

114 residue is crucial for its activity. From the

deduced amino acid sequence a cleavable signal

peptide and glycosylation sites were found; suggest-

ing post-translational regulation of the protein

(Uy and Wold 1977; Huber and Hardin 2004). In

addition, it was shown that THCA synthase is

expressed exclusively in the glandular hairs and is

also a secreted biosynthetic enzyme, which was

localized to and functioned in the storage cavity of

the glandular hairs; indicating that the storage cavity

is not only the site for the accumulation of cannab-

inoids but also for the biosynthesis of THCA

(Sirikantaramas et al. 2005). This enzyme also has

been crystallized (Shoyama et al. 2005). The CBDA

synthase gene has been cloned and expressed (Taura

et al. 2007); the open reading frame encodes a 544

amino acid polypeptide, showing 83.9% of homology

with THCA synthase. Furthermore, the expressed

protein revealed a FDA-dependent reaction similar to

THCA synthase and glycosylation sites were also

found. In addition, it was suggested that a difference

between the two reaction mechanisms from THCA

and CBDA synthases is seen in the proton transfer

step; while CBDA synthase removes a proton from

the terminal methyl group of CBGA, THCA synthase

takes it from the hydroxyl group of CBGA.

The transformation from CBD to CBE by cannabis

suspension (Hartsel et al. 1983), callus cultures

(Braemer et al. 1985) and Saccharum officinarum

L. cultures (Hartsel et al. 1983) have been reported,

as well as the transformation of D9-THC to canna-

bicoumaronone (Braemer and Paris 1987) by
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cannabis cell suspension cultures. From these studies,

an epoxidation by epoxidases or cytochromes P-450

enzymes was proposed or a free radical-mediated

oxidation mechanism (reactive oxygen species,

ROS). It should be noted that the mentioned biocon-

versions all concern the decarboxylated compounds,

i.e. not the normal biosynthetic products in the plant.

Studies on the corresponding acids are required to

reveal any relationship between the bioconversion

experiments and the cannabinoid biosynthesis.

Oxidative stress in plants can be induced by several

factors such as anoxia or hypoxia (by excess of rainfall,

winter ice encasement, spring floods, seed imbibition,

etc.), pathogen invasion, UV stress, herbicide action

and programmed cell death or senescence (Pastori and

del Rio 1997; Jabs 1999; Blokhina et al. 2003). The

proposed mechanisms of oxidation from the neutral

and acid forms of D9-THC to the neutral and acid forms

of CBN or D8-THC by free radicals or hydroxylated

intermediates (Turner and ElSohly 1979; Miller et al.

1982) could originate from a production of ROS.

Antioxidants and antioxidant enzymes such as toc-

opherols, phenolic compounds (flavonoids), super-

oxide dismutase, ascorbate peroxidase and catalase

have been proposed as components of an antioxidant

defense mechanism to control the level of ROS and

protect cells under stress conditions (Blokhina et al.

2003). Cannabinoids could fit in this antioxidant

system; however, their specific accumulation in spe-

cialized glandular cells point to another function for

these compounds, e.g. antimicrobial agent. Sirikant-

aramas et al. (2005) found that cannabinoids are

cytotoxic compounds for cell suspension cultures from

C. sativa, tobacco BY-2 and insects; suggesting that

the cannabinoids act as plant defense compounds and

would protect the plant from predators such as insects.

The THCA synthase reaction produces hydrogen

peroxide as well as THCA during the oxidation of
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CBGA (Sirikantaramas et al. 2004); a toxic amount of

hydrogen peroxide could be accumulated together with

the cannabinoids which must be secreted into the

storage cavity from the glandular hairs to avoid cellular

damage itself. Additionally, Morimoto et al. (2007)

have shown that cannabinoids have the ability to

induce cell death through mitochondrial permeability

transition in cannabis leaf cells, suggesting a regula-

tory role in cell death as well as in the defense systems

of cannabis leaves. On the other hand, although CBN

type cannabinoids have been isolated from cannabis

extracts, they are probably artifacts.

Feeding studies using cannabigerovarinic acid

(CBGVA) as precursor, showed that the biosynthesis

of propyl cannabinoids (Shoyama et al. 1984) proba-

bly follows a similar pathway (Fig. 4) yielding

cannabidivarinic acid (CBDVA), cannabichromevari-

nic acid (CBCVA), D9-tetrahydrocannabivarinic acid

(D9-THCVA), cannabielsovarinic acid B (CBEVA-B)

and cannabivarin (CBV).

Based on the structure of olivetolic acid (Fig. 3), a

polyketide synthase (PKS) could be involved in its

biosynthesis. Raharjo et al. (2004a) found in vitro

enzymatic activity for a PKS, though yielding the

olivetol and not the olivetolic acid as the reaction

product. It is known that olivetolic acid is the active

form for the next biosynthetic reaction steps of the

cannabinoids. Feeding studies (Kajima and Piraux

1982), however, showed a low incorporation in

cannabinoids using radioactive olivetol as precursor.

Studies on the isoprenoid pathway suggest that the

flux of active precursors (prenyl diphosphates) can be

stopped by enzymatic hydrolysis by phosphatases,

activated by kinases or even redirected to other

biosynthetic processes (Goldstein and Brown 1990;

Meigs and Simoni 1997). Furthermore, the presence
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of phloroglucinol glucoside in cannabis (Hammond

and Mahlberg 1994) suggests a regulatory role for

olivetolic acid in the biosynthesis of cannabinoids

(Fig. 3), although, the presence of olivetolic acid and

olivetol in ants from genus Crematogaster has been

reported (Jones et al. 2005); both olivetolic acid and

olivetol are classified as resorcinolic lipids (alkylres-

orcinol, resorcinolic acid); these last ones have been

detected in several plants and microorganisms (Roos

et al. 2003; Jin and Zjawiony 2006).

Kozubek and Tyman (1999) suggested that

alkylresorcinols, such as olivetol, are formed from

biosynthesized alkylresorcinolic acids by enzymatic

decarboxylation or via modified fatty acid-synthesiz-

ing enzymes, where the alkylresorcinolic acid

carboxylic group would be expected to be also attached

either to ACP (acyl carrier protein) or to CoA. Thus, in

the release of the molecule from the protein compart-

ment in which it was attached or elongated,

simultaneous decarboxylation of the alkylresorcinol

may occur, otherwise the alkylresorcinolic acid would

be the final product. Recently, it was shown that the

fatty acid unit acts as a direct precursor and forms the

side-chain moiety of alkylresorcinols (Suzuki et al.

2003). The identification of methyl- (Vree et al. 1972),

butyl- (Smith 1997), propyl- and pentyl- cannabinoids

suggest the biosynthesis of alkylresorcinolic acids with

different side-chain moieties, originating from differ-

ent lengths of an activated short chain fatty acid unit

(fatty acid-CoA). This side chain is important for the

affinity, selectivity and pharmacological potency for

the cannabinoids receptors (Thakur et al. 2005).

Biotransformation of cannabinoids to glucosylated

forms by plant tissues (Tanaka et al. 1997) and various

oxidized derivatives by microorganisms (Robertson

et al. 1978; Binder and Popp 1980) have been reported;

as well as biotransformations for olivetol (McClanahan

and Robertson 1984). However, the best studied

biotransformations are in animals and humans

(Mechoulam 1970; Watanabe et al. 2007).

Flavonoids

Flavonoids are ubiquitous and have many functions

in the biochemistry, physiology and ecology of plants

(Shirley 1996; Gould and Lister 2006), and they are

important in both human and animal nutrition and

health (Manthey and Buslig 1998; Ferguson 2001). In

cannabis, more than 20 flavonoids have been reported

(Clark and Bohm 1979, Vanhoenacker et al. 2002;

ElSohly and Slade 2005) representing 7 chemical

structures which can be glycosylated, prenylated or

methylated (Fig. 5). Cannflavin A and cannflavin B

are methylated isoprenoid flavones (Barron and

Ibrahim 1996). Some pharmacological effects from

cannabis flavonoids have been detected such as

inhibition of prostaglandin E2 production by canna-

flavin A and B (Barrett et al. 1986), inhibition of the

activity of rat lens aldose reductase by C-diglyco-

sylflavones, orientin and quercetin (Segelman et al.

1976); other studies only suggest a possible modu-

lation with the cannabinoids (McPartland and

Mediavilla 2002).

Flavonoid biosynthesis

Cannabis flavonoids have been isolated and detected

from flowers, leaves, twigs and pollen (Segelman

et al. 1978; Vanhoenacker et al. 2002; Ross et al.

2005). There is no evidence indicating the presence

of flavonoids in glandular trichomes, however, it is

know that in Betulaceae family and in the genera

Populus and Aesculus flavonoids are secreted by

glandular trichomes or by a secretory epithelium

(Wollenweber 1980). Acylated kaempferol glyco-

sides have also been detected in leaf glandular

trichomes from Quercus ilex (Skaltsa et al. 1994),

and flavone aglycones from Origanum x intercedens

(Bosabalidis et al. 1998) and from Mentha x piperita

(Voirin et al. 1993).

Although the flavonoid pathway has been exten-

sively studied in several plants (Davies and Schwinn

2006), there is no data on the biosynthesis of flavonoids

in cannabis. The general pathway for flavone and

flavonol biosynthesis as it is expected to occur in

cannabis is shown in Fig. 5. The precursors are

phenylalanine from the shikimate pathway and malo-

nyl-CoA, which is synthesized by carboxylation of

acetyl-CoA, a central intermediate in the Krebs tricar-

boxylic acid cycle (TCA cycle). Phenylalanine is

converted into p-cinnamic acid by a Phenylalanine

ammonia lyase (PAL), EC 4.3.1.5; this p-cinnamic acid

is hydroxylated by a Cinnamate 4-hydroxylase (C4H),

EC 1.14.13.11, to p-coumaric acid and a CoA thiol ester

is added by a 4-Coumarate:CoA ligase (4CL), EC

6.2.1.12. One molecule of p-coumaroyl-CoA and three
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molecules of malonyl-CoA are condensed by a

Chalcone synthase (CHS), EC 2.3.1.74, a PKS, yielding

naringenin chalcone. The naringenin chalcone is sub-

sequently isomerized by the enzyme Chalcone isom-

erase (CHI), EC 5.5.1.6, to naringenin, a flavanone. This

naringenin is the common substrate for the biosynthesis

of flavones and flavonols. Hydroxy substitution to ring C

at position 3 by a Flavanone 3-hydrolase (F3H), EC

1.14.11.9; and to ring B at position 3’ by a Flavonoid 30-
hydrolase (F30H), EC 1.14.13.21, occurs in naringenin.

F3H is a 2-oxoglutarate-dependent dioxygenase

(2OGD) and F30H is a cytocrome P450. Subsequently,

in the ring C at positions 2 and 3 a double bond is formed

by a Flavonol synthase (FLS), EC 1.14.11.-, or Flavone

synthase (FNS). FLS is a 2ODG and for FNS two

distinct activities have been characterized that convert

flavanones to flavones. In most plants FNS is a P450

enzyme (FNSII, EC 1.14.13.-), but in species from

Apiaceae family FNS is a 2ODG (FNSI, EC 1.14.11.-).

Modification reactions as glycosylation by UDP-glyco-

syltransferase (UGT, EC 2.4.1,-), methylation by a

SAM-methyltransferase (OMT, EC 2.1.1.-) and prenyl-

ation by prenyltransferases are added to the flavone and

flavonol. Alternative routes for luteolin, and cannflavin

A/B biosynthesis starting from feruloyl-CoA or caf-

feoyl-CoA with malonyl-CoA are also proposed.

Conversion of these substrates to homoeriodictyol or

eriodictyol by Homoeriodictyol/eriodictyol synthase

(HEDS or HvCHS), a PKS, has been shown (Christen-

sen et al. 1998). Feruloyl-CoA and caffeoyl-CoA are

phenylpropanoids which are derivatives from p-couma-

ric acid and are precursors for lignin biosynthesis

(Douglas 1996). HvCHS leads the production of the

methylated flavanone homoeriodictyol and eliminate

the need of the F30H and the OMT. It has been shown

that the flavonoid pathway is tightly regulated and

several transcription factors have been identified

(Davies and Schwinn 2003; Davies and Schwinn
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2006), as well as formation of metabolons (Winkel-

Shirley 1999).

From biotransformation studies using C. sativa

cell cultures, the transformation from apigenin to

vitexin was shown, as well as glycosylations from

apigenin to apigenin 7-O-glucoside and from quer-

cetin to quercetin-O-glucoside (Braemer et al. 1986).

Regarding to PKS in cannabis, CHS activity was

detected from flower protein extracts (Raharjo et al.

2004a) and one PKS gene from leaf was identified

(Raharjo et al. 2004b), which expressed activity for

CHS, Phlorisovalerophenone synthase (VPS) and

Isobutyrophenone synthase (BUS). VPS, isolated

from H. lupulus L. cones (Paniego et al. 1999), and

BUS, isolated from Hypericum calycinum cell cul-

tures (Klingauf et al. 2005), are PKSs that condense

malonyl-CoA with isovaleryl-CoA or isobutyryl-

CoA, respectively.

Stilbenoids

The stilbenoids are phenolic compounds distributed

throughout wide in the plant kingdom (Gorham et al.

1995). Their functions in plants include constitutive

and inducible defense mechanisms (Chiron et al.

2000; Jeandet et al. 2002), plant growth inhibitors

and dormancy factors (Gorham 1980). Frequently,

the stilbenoids are constituents of heartwood or roots,

and have antifungal and antibacterial activities

(Vastano et al. 2000; Kostecki et al. 2004) or they

are repellent towards insects (Hillis and Inoue

1968). Nineteen stilbenoids have been identified in

cannabis (Turner et al. 1980; Ross and ElSohly 1995)

(Figs. 6, 7, 8).

Although some studies have reported antibacterial

activity for some cannabis stilbenoids (Molnar et al.

1986) others have reported that the bibenzyls

3,40-dihydroxy-5-methoxybibenzyl, 3,30-dihydroxy-

5,40-dimethoxybibenzyl, 3,40-dihydroxy-5,30-dime-

thoxy-50-isoprenyl bibenzyl did not shown activity

in bactericidal, estrogenic and, germination- and

growth-inhibiting properties or the SINDROOM tests

(a screening test for central nervous system activity)

(Kettenes-van den Bosch 1978). It has been observed

that the stilbenoids show activities such as anti-

inflammatory (Adams et al. 2005; Djoko et al. 2007),

antineoplastic (Oliver et al. 1994; Iliya et al. 2006;

Yamada et al. 2006), neuroprotective (Lee et al.

2006), cardiovascular protective (Leiro et al. 2005;

Estrada-Soto et al. 2006), antioxidant (Stivala et al.

2001) antimicrobial (Lee et al. 2005), and longevity

agents (Kaeberlein et al. 2005; Valenzano et al.

2006).

OH

MeO

OH

OH

MeO OH

OMe

O H

M e O O H

O M e

O H

M e O O H

O M e

3,4’-dihydroxy-5-methoxy bibenzyl 3,3’-dihydroxy-5,4’-dimethoxy bibenzyl

O H

O H

Dihydroresveratrol

Canniprene 3,4’-dihydroxy-5,3’-dimethoxy-5’-isoprenyl

O H

M e O

O H

Cannabistilbene I

OH

MeO OH

OMe

OMe

Cannabistilbene IIa

OH

MeO

OMe

OH

OMe

Cannabistilbene IIb

HO

Fig. 6 Bibenzyls compounds in C. sativa. The configuration of the structures is not given for simplicity reasons

Phytochem Rev (2008) 7:615–639 625

123



Stilbenoid biosynthesis

Cannabis stilbenoids have been detected and isolated

from stem (Crombie and Crombie 1982), leaves

(Kettenes-van den Bosch and Salemink 1978) and

resin (El-Feraly et al. 1986).

It has been suggested (Shoyama and Nishioka

1978; Crombie and Crombie 1982) that their biosyn-

thesis could have a common origin (Fig. 9). The first

step could be the formation of bibenzyl compounds

from the condensation of one molecule of dihydro-p-

coumaroyl-CoA and 3 molecules of malonyl-CoA to

dihydroresveratrol. It was shown that in cannabis

both dihydroresveratrol and canniprene are synthe-

sized from dihydro-p-coumaric acid (Kindl 1985). In

orchids, the induced synthesis by fungal infection of

bibenzyl compounds by a PKS, called Bibenzyl

synthase (BBS), was shown to condense dihydro-m-

coumaroyl-CoA and malonyl-CoA to 3,30,5-trihydr-

oxybibenzyl (Reinecke and Kindl 1994a). It was also

found that this enzyme can accept dihydro-p-couma-

royl-CoA and dihydrocinnamoyl-CoA as substrates,

although to a lesser degree. Dihydropinosylvin syn-

thase is an enzyme from Pinus sylvestris (Fliegmann

et al. 1992) that accepts dihydrocinnamoyl-CoA as

substrate to form bibenzyl dihydropinosylvin. Gehlert

and Kindl (1991) found a relationship between

induced formation by wounding of 3,30-dihydroxy-

5,40-dimethoxybibenzyl and the enzyme BBS in

orchids. This result also suggests that in cannabis

the 3,30-dihydroxy-5,40-dimethoxybibenzyl com-

pound could have the 3,30,5-trihydroxybibenzyl

formed from dihydro-m-coumaroyl-CoA or dihydro-

caffeoyl-CoA as intermediate. In orchids, however,

the incorporation of phenylalanine into dihydro-m-

coumaric acid, dihydrostilbene and dihydrophenan-

threnes was shown (Fritzemeier and Kindl 1983);

indicating an origin from the phenylpropanoid path-

way. Similar to flavonoid biosynthesis, modification

reactions such as methylation and prenylation could

form the rest of the bibenzyl compounds in cannabis.

A second step could involve the synthesis of 9,10-

dihydrophenanthrenes from bibenzyls. It is known

that O-methylation is a prerequisite for the cycliza-

tion of bibenzyls to dihydrophenanthrenes in orchids

(Reinecke and Kindl 1994b) and a transient accumu-

lation of the mRNAs from S-adenosyl-homocysteine

hydrolase and BBS was also detected upon fungal

infection (Preisig-Müller et al. 1995). The cyclization

mechanism in plants is unkown. An intermediate step

between bibenzyls and 9,10-dihydrophenanthrenes

could be involved in the biosynthesis of spirans. It

has been proposed that spirans could be derived from

o–p, o–o or p–p coupling of dihydrostilbenes fol-

lowed by reduction (Crombie et al. 1982; Crombie

1986) and that 9,10-dihydrophenanthrenes could be

derived by a dienone-phenol rearrangement from the

spirans. No reports about the biosynthesis of spirans

or about the regulation of the stilbenoid pathway in

cannabis exist.
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Fig. 7 9,10-dihydrophenanthrenes from C. sativa
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Terpenoids

The terpenoids or isoprenoids are another of the major

plant metabolite groups. The isoprenoid pathway

generates both primary and secondary metabolites

(McGarvey and Croteau 1995). In primary metabo-

lism the isoprenoids have functions as phytohormones

(gibberellic acid, abscisic acid and cytokinins) and

membrane stabilizers (sterols), and they can be

involved in respiration (ubiquinones) and photosyn-

thesis (chlorophylls and plastoquinones); while in

secondary metabolism they participate in the comm-

unication and plant defense mechanisms (phytoalexins).

In cannabis 120 terpenes have been identified (ElSohly

and Slade 2005): 61 monoterpenes, 52 sesquiterpe-

noids, 2 triterpenes, one diterpene and 4 terpenoid

derivatives (Fig. 10). The terpenes are responsible for

the flavor of the different varieties of cannabis and

determine the preference of the cannabis users. The

sesquiterpene caryophyllene oxide is the primary

volatile detected by narcotic dogs (Stahl and Kunde

1973). It has been observed that terpene yield and

floral aroma vary with the degree of maturity of

female flowers (Mediavilla and Steinemann 1997) and

it has been suggested that terpene composition of the

essential oil could be useful for the chemotaxonomic

analysis of cannabis (Hillig 2004). Pharmacological

effects have been detected for some cannabis terpenes

and they may synergize the effects of the cannabi-

noids (Burstein et al. 1975; McPartland and

Mediavilla 2002). Terpenes have been detected and

isolated from the essential oil from flowers (Ross

and ElSohly 1996) roots (Slatkin et al. 1971) and

leaves (Bercht et al. 1976; Hendriks et al. 1978);

however, the glandular hairs are the main site of

localization (Malingre et al. 1975).

Terpenoid biosynthesis

The isoprenoid pathway has been extensively studied

in plants (Bouvier et al. 2005). The terpenoids are
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derived from the mevalonate (MVA) pathway, which

is active in the cytosol, or from the plastidial

deoxyxylulose phosphate/methyl-erythritol phosphate

(DOXP/MEP) pathway (Fig. 11). Both pathways

form isopentenyl diphosphate (IPP) and its allylic

isomer dimethylallyl diphosphate (DMAPP). Con-

densation reactions by prenyl transferases produce a

series of prenyl diphosphates. Generally, it is con-

sidered that the MVA pathway provides precursors

for the synthesis of sesquiterpenoids, triterpenoids,

steroids and others; while the DOXP/MEP pathway

supplies precursors for monoterpenoids, diterpenoids,

carotenoids and others. In cannabis both pathways

could be present, DOXP/MEP pathway for monoter-

penes and diterpenes and MVA pathway for

sesquiterpenes and triterpenes. As it was previously

mentioned the DOXP/MEP pathway supplies the

GPP precursor for the biosynthesis of cannabinoids.

There is little knowledge about the regulation of both

pathways in the plant cells and which transcriptional

factors control them.

Alkaloids

The alkaloids are another major group of secondary

metabolites in plants. Alkaloids are basic, nitroge-

nous compounds usually with a biological activity in

low doses and they can be derived from amino acids.

In cannabis 10 alkaloids have been identified (Turner

et al. 1980; Ross and ElSohly 1995). Choline,

neurine, L-(+)-isoleucine-betaine and muscarine are

protoalkaloids; hordenine is a phenethylamine and

trigonelline is a pyridine (Fig. 12). Cannabisativine

and anhydrocannabisativine are polyamines derived

from spermidine and are subclassified as dihydrope-

riphylline type (Bienz et al. 2002). They are

13-membered cyclic compounds where the poly-

amine spermidine is attached via its terminal N-atoms

to the b-position and to the carboxyl carbon of a C14-

fatty acid (Fig. 13). Piperidine and pyrrolidine were

also identified in cannabis. These alkaloids have been

isolated and identified from roots, leaves, stems,

pollen and seeds (Paris et al. 1975; El-Feraly and

OH

Ipsdienol Limonene

CHO

Safranal α-Phellandrene

OH

Geraniol

O

Caryophyllene oxide Humulene α-Curcumene α-Selinene α-Guaiene Farnesol

O H Phytol

O

Friedelin

O H

Epifriedelanol

O

OH

OHH

Vomifoliol

O

OH

OHH

Dihydrovomifoliol

O

β-Ionone

O
Dihydroactinidiolide

MONOTERPENES

SESQUITERPENES

DITERPENES

TRITERPENES

MEGASTIGMANES

APOCAROTENE

HO

Fig. 10 Some examples of isolated terpenoids from C. sativa

628 Phytochem Rev (2008) 7:615–639

123



IPP DMAPP

IPP

GPP

FPP

GGPP

MAV Pathway            DOXP/MEP Pathway

IPP

IPP

Squalene
Triterpenoids

Sterols

Sesquiterpenoids

(C15)

Diterpenoids (C20)
Gibberellins

Plastoquinone

Phylloquinone

Monoterpenoids (C10)

FPP

1. IPP isomerase

2. GPP synthase

3. FPP synthase

4. Squalene synthase

5. GGPP synthase

1

2

3

4

5

C30

Fig. 11 General pathway for the biosynthesis of terpenoids

Protoalkaloids

Phenethylamines

Pyridines

Piperidines

Pyrrolidines

Dihydroperiphylline type polyamines

( C H 3 )3 N C H 2 C H 2 O H
+

Choline

C H 2 C H N ( C H 3 ) 2 C H 3 O H
+

Neurine

N ( C H 3 ) 3

C H 3 C H 2 C H ( C H 3 ) C H C O O

+

L-(+)Isoleucine-betaine
O

N(CH3)3

+

Muscarine

NH Hordenine

COOH

N
H+

Trigonelline

N
H

Piperidine

N
H

Pyrrolidine

NC5H11

OH

H
OH

NH

H

NH
O

(+)-Cannabisativine

NC5H11

O

H

NH

H

NH
O

Anhydrocannabisativine

HO

HO

H
3
C

Fig. 12 Alkaloids isolated from C. sativa

Phytochem Rev (2008) 7:615–639 629

123



Turner 1975; ElSohly et al. 1978). The presence of

muscarine in cannabis has been questioned (ElSohly

1985; Mechoulam 1988).

Alkaloid biosynthesis

Kabarity et al. (1980) reported induction of C-tumors

(tumor induced by colchicine) and polyploidy on

roots of bulbs from Allium cepa by polar fractions

from cannabis. It is known that hordenine is a feeding

repellent for grasshoppers (Southon and Backingham

1989) and its presence in cannabis could suggest a

similar role. The decarboxylation of tyrosine gives

tyramine, which on di-N-methylation yields horde-

nine (Brady and Tyler 1958; Dewick 2002).

Trigonelline is found widely in plants and it has

been suggested that it participates in the pyridine

nucleotide cycle which supplies the cofactor NAD.

Trigonelline is synthesized from the nicotinic acid

formed in the pyridine nucleotide cycle (Zheng et al.

2004). Choline is an important metabolite in plants

because it is the precursor of the membrane

phospholipid phosphatidylcholine (Rhodes and

Hanson 1993) and is biosynthesized from ethanol-

amine, for which the precursor is the amino acid

serine (McNeil et al. 2000). Piperidine originates

from lysine and pyrrolidine from ornithine (Dewick

2002). The structures of cannabisativine and anhyd-

rocannabisativine are similar to the alkaloids

palustrine and palustridine from several Equisetum

species (Fig. 13). A common initial step in biosyn-

thesis of the ring has been proposed starting with an

enantioselective addition of the amine from the

spermidine to an a,b-unsatured fatty acid (Schultz

et al. 1997). However, there are no studies about the

biosynthesis and biological functions of cannabisat-

ivine and anhydrocannabisativine. It is known that

spermidine is biosynthesized from putrescine, which

comes from ornithine (Tabor et al. 1958). In the

therapeutic field, Bercht et al. (1973) did no find

analgesic, hypothermal, rotating rod and toxicity

effects on mice by isoleucine betaine. Some other

studies suggest pharmacological activities of smoke

condensate and aqueous or crude extracts containing

cannabis alkaloids (Klein and Rapoport 1971;
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Johnson et al. 1984). Due to the low alkaloid

concentration in cannabis [the concentration of

choline and neurine from dried roots is 0.01%

(Turner and Mole 1973), while THCA from bracts

is 4.77% (Kimura and Okamoto 1970)] chemical

synthesis or biosynthesis could be options to have

sufficient quantities of pure alkaloids for biological

activity testing. New methods for synthesis for

cannabisativine (Kuethe and Comins 2004; Hamada

2005) as well as the biosynthesis of choline and

atropine by hairy root cultures of C. sativa (Wahby

et al. 2006) have been reported.

Lignanamides and phenolic amides

Cannabis fruits and roots (Sakakibara et al. 1995) have

yielded 11 compounds identified as phenolic amides

and lignanamides. N-trans-coumaroyltyramine,

N-trans-feruloyltyramine and N-trans-caffeoyltyr-

amine are phenolic amides; while cannabisin-A, -B,

-C, -D, -E, -F, -G and grossamide are lignanamides

(Fig. 14). The lignanamides belong to the lignan

group (Bruneton 1999) and the cannabis lignana-

mides are classified as lignans of the Arylnaph-

thalene derivative type (Lewis and Davin 1999; Ward

1999).

The phenolic amides have cytotoxic (Chen et al.

2006), anti-inflammatory (Kim et al. 2003), antineo-

plastic (Ma et al. 2004), cardiovascular (Yusuf et al.

1992) and mild analgesic activity (Slatkin et al.

1971). For the lignanamides grossamide, cannabisin-

D and -G a cytotoxic activity was reported (Ma et al.

2002). The presence and accumulation of phenolic

amides in response to wounding and UV light

suggests a chemical defense against predation in

plants (Back et al. 2001; Majak et al. 2003). Further-

more, it has been suggested that they have a role in

the flowering process and the sexual organogenesis,

in virus resistance (Ponchet et al. 1982; Martin-

Tanguy 1985), as well as in healing and suberization

process (Bernards 2002; King and Calhoun 2005).

For the lignanamides cannabisin-B and -D a potent

feeding deterrent activity was reported (Lajide et al.

1995). It is known that lignans have insecticidal

effects (Garcia and Azambuja 2004).
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Lignanamide and phenolic amide biosynthesis

The structures of the lignanamides and phenolic

amides from cannabis suggest condensation and

polymerization reactions in their biosynthesis starting

from the precursors tyramine and CoA-esters of

coumaric, caffeic and coniferic acid (Fig. 14). It is

known that the enzyme Hydroxycinnamoyl-

CoA:tyramine hydroxycinnamoyltransferase, E.C.

2.3.1.110 (THT) condenses hydroxycinnamoyl-CoA

esters with tyramine (Hohlfeld et al. 1996; Yu and

Facchini 1999). As it was mentioned previously,

tyramine comes from tyrosine and the phenylpropa-

noids from phenylalanine. The amides N-trans-

feruloyltyramine and N-trans-caffeoyltyramine could

be the monomeric intermediates in the biosynthesis

of these lignanamides. It has been suggested that

these lignanamides could be formed by a random

coupling mechanism in vivo or they are just isolation

artifacts (Ayres and Loike 1990; Lewis and Davin

1999); however, biosynthesis studies are necessary to

elucidate their origin.

Conclusion

Cannabis sativa L. not only produces cannabinoids,

but also other kinds of secondary metabolites which

can be grouped into 5 classes. Little attention has

been given to the pharmacology of these compounds.

The isolation and identification of the cannabinoids,

the identification of the endocannabinoids and their

receptors, as well as their metabolism in humans have

been extensively studied. However, the biosynthetic

pathway of the cannabinoids and its regulation is not

completely elucidated in the plant, the same applies

for other secondary metabolite groups from cannabis.

In three of the mentioned secondary metabolite

groups (cannabinoids, flavonoids and stilbenoids),

enzymes belonging to the polyketide synthase group
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could be involved in the biosynthesis of their initial

precursors. Only one gene of CHS has so far been

identified and more PKS genes are thought to be

present for the flavonoid pathway as well as the

stilbenoid and cannabinoid pathway. Cannabinoids

are unique compounds only found in cannabis.

However, in Helichrysum umbraculigerum Less., a

species from the family Compositae, the presence of

CBGA, CBG and analogous to CBG was reported

(Bohlmann and Hoffmann 1979). Moreover, in

liverworts from Radula species the isolation of

geranylated bibenzyls analogous to CBG was

reported (Asakawa et al. 1982), suggesting homology

of PKS and prenylase genes from the cannabinoid

pathway in other species. Crombie et al. (1988)

reported the chemical synthesis of bibenzyl

cannabinoids.

Plants, including C. sativa, have developed intri-

cate control mechanisms to be able to induce defense

pathways when are required and to regulate second-

ary metabolite levels in the various tissues at specific

stages of their life cycle. Figure 15 shows the

currently known various secondary metabolite path-

ways in cannabis. Research on the secondary

metabolism of C. sativa as well as its regulation will

allow us to control or manipulate the production of

the important metabolites, as well as the biosynthesis

of new compounds with potential therapeutic value.
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