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Our understanding of the biology, biochemistry,
and genetic development of roots has considerably
improved during the last decade (Smith and Fedor-
off, 1995; Flores et al., 1999; Benfey and Scheres,
2000). In contrast, the processes mediated by roots in
the rhizosphere such as the secretion of root border
cells and root exudates are not yet well understood
(Hawes et al., 2000). In addition to the classical roles
of providing mechanical support and allowing wa-
ter/nutrient uptake, roots also perform certain spe-
cialized roles, including the ability to synthesize, ac-
cumulate, and secrete a diverse array of compounds
(Flores et al., 1999). Given the complexity and biodi-
versity of the underground world, roots are clearly
not passive targets for soil organisms. Rather, the
compounds secreted by plant roots serve important
roles as chemical attractants and repellants in the
rhizosphere, the narrow zone of soil immediately
surrounding the root system (Estabrook and Yoder,
1998; Bais et al., 2001). The chemicals secreted into
the soil by roots are broadly referred to as root exu-
dates. Through the exudation of a wide variety of
compounds, roots may regulate the soil microbial
community in their immediate vicinity, cope with
herbivores, encourage beneficial symbioses, change
the chemical and physical properties of the soil, and
inhibit the growth of competing plant species (Nardi
et al., 2000; Fig. 1A). The ability to secrete a vast array
of compounds into the rhizosphere is one of the most
remarkable metabolic features of plant roots, with
nearly 5% to 21% of all photosynthetically fixed car-
bon being transferred to the rhizosphere through
root exudates (Marschner, 1995).

Although root exudation clearly represents a sig-
nificant carbon cost to the plant, the mechanisms and
regulatory processes controlling root secretion are
just now beginning to be examined. Root exudates
have traditionally been grouped into low- and
high-Mr compounds. However, a systematic study to
determine the complexity and chemical composition
of root exudates from diverse plant species has not
been undertaken. Low-Mr compounds such as amino
acids, organic acids, sugars, phenolics, and various
other secondary metabolites are believed to comprise
the majority of root exudates, whereas high-Mr exu-
dates primarily include mucilage (high-Mr polysac-
charides) and proteins.

The rhizosphere is a densely populated area in
which the roots must compete with the invading root
systems of neighboring plant species for space, wa-
ter, and mineral nutrients, and with soil-borne mi-
croorganisms, including bacteria, fungi, and insects
feeding on an abundant source of organic material
(Ryan and Delhaize, 2001). Thus, root-root, root-
microbe, and root-insect communications are likely
continuous occurrences in this biologically active soil
zone, but due to the underground nature of roots,
these intriguing interactions have largely been over-
looked. Root-root and root-microbe communication
can either be positive (symbiotic) to the plant, such as
the association of epiphytes, mycorrhizal fungi, and
nitrogen-fixing bacteria with roots; or negative to the
plant, including interactions with parasitic plants,
pathogenic bacteria, fungi, and insects. Thus, if plant
roots are in constant communication with symbiotic
and pathogenic organisms, how do roots effectively
carry out this communication process within the
rhizosphere?

A large body of knowledge suggests that root ex-
udates may act as messengers that communicate and
initiate biological and physical interactions between
roots and soil organisms. This update will focus on
recent advancements in root exudation and rhizo-
sphere biology.

ROOT-RHIZOSPHERE COMMUNICATION

Survival of any plant species in a particular rhizo-
sphere environment depends primarily on the ability
of the plant to perceive changes in the local environ-
ment that require an adaptive response. Local
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Figure 1. A, Representation of the complex interactions mediated by root exudates that take place in the rhizosphere
between plant roots and other organisms. Organisms are not drawn to scale. QS, quorum sensing. B, In vitro culture of oca
(Oxalis tuberosa) grown in sterile liquid medium under UV light exposure. C, Chemical structure of harmine as determined
by 1H and C13 NMR analysis. D, Fluorescent root exudates from O. tuberosa were observed bound to the blue germination
paper under UV light exposure. E, Soil samples showing fluorescence obtained from greenhouse-grown oca plants. Samples
were taken 5 cm from the stem girth of the plant, and the numbers (1–8) denote the depth by every 1 cm toward the top-layer
soil. In vitro-grown oca plants and soil samples collected from oca’s rhizosphere were visualized for blue-purplish
fluorescence under UV light exposure with a short wave of UV approximately 254 nm.
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changes within the rhizosphere can include the
growth and development of neighboring plant spe-
cies and microorganisms. Upon encountering a chal-
lenge, roots typically respond by secreting certain
small molecules and proteins (Stintzi and Browse,
2000; Stotz et al., 2000). Root secretions may play
symbiotic or defensive roles as a plant ultimately
engages in positive or negative communication, de-
pending on the other elements of its rhizosphere. In
contrast to the extensive progress in studying plant-
plant, plant-microbe, and plant-insect interactions
that occur in aboveground plant organs such as
leaves and stems, very little research has focused on
root-root, root-microbe, and root-insect interactions
in the rhizosphere. The following sections will exam-
ine the communication process between plant roots
and other organisms in the rhizosphere.

Root-Root Communication

In natural settings, roots are in continual commu-
nication with surrounding root systems of neighbor-
ing plant species and quickly recognize and prevent
the presence of invading roots through chemical
messengers. Allelopathy is mediated by the release of
certain secondary metabolites by plant roots and
plays an important role in the establishment and
maintenance of terrestrial plant communities. It also
has important implications for agriculture; the effects
may be beneficial, as in the case of natural weed
control, or detrimental, when allelochemicals pro-
duced by weeds affect the growth of crop plants
(Callaway and Aschehoug, 2000). A secondary me-
tabolite secreted by the roots of knapweed (Centaurea
maculosa) provides a classic example of root exudates
exhibiting negative root-root communication in the
rhizosphere. Recently, Bais et al. (2002c) identified
(�)-catechin as the root-secreted phytotoxin respon-
sible for the invasive behavior of knapweed in the
rhizosphere. Interestingly, (�)-catechin was shown
to account for the allelochemical activity, whereas
(�)-catechin was inhibitory to soil-borne bacteria
(Bais et al., 2002c ). In addition to racemic catechin
being detected in the exudates of in vitro-grown
plants, the compound was also detected in soil ex-
tracts from knapweed-invaded fields, which strongly
supported the idea that knapweed’s invasive behav-
ior is due to the exudation of (�)-catechin. Moreover,
this study established the biological significance of
the exudation of a racemic compound such as cate-
chin, demonstrating that one enantiomer can be re-
sponsible for the invasive nature of the plant,
whereas the other enantiomer can contribute to plant
defense.

Although studies have reported the biosynthesis of
the common enantiomer (�)-catechin, little is known
regarding the synthesis of (�)-catechin or (�)-
catechin as natural products. One possibility is that
(�)-catechin production is followed by racemization

in the root or during the exudation process. Alterna-
tively, there could be a deviation from the normally
observed stereo- and enantiospecific biosynthesis
steps. The flavonols kaempferol and quercetin are
generally perceived as final products, rather than
intermediates, in the pathway (Winkel-Shirley, 2001).
The correlation of these experiments to the root exu-
dation process has yet to be determined, but the data
should provide a starting point for further studies on
the characterization of specific committed steps in
the synthesis of racemic catechin in knapweed roots.

The above example demonstrates how plants use
root-secreted secondary metabolites to regulate the
rhizosphere to the detriment of neighboring plants.
However, parasitic plants often use secondary me-
tabolites secreted from roots as chemical messengers
to initiate the development of invasive organs (haus-
toria) required for heterotrophic growth (Keyes et al.,
2000). Some of the most devastating parasitic plants
of important food crops such as maize (Zea mays),
sorghum (Sorghum bicolor), millet (Panicum milaceum),
rice (Oryza sativa), and legumes belong to the Scro-
phulariaceae, which typically invade the roots of sur-
rounding plants to deprive them of water, minerals,
and essential nutrients (Yoder, 2001). It has been re-
ported that certain allelochemicals such as flavonoids,
p-hydroxy acids, quinones, and cytokinins secreted by
host roots induce haustorium formation (Estabrook
and Yoder, 1998; Yoder, 2001), but the exact structural
requirements of the secreted compounds for hausto-
rium induction is not fully understood.

Root-Microbe Communication

Root-microbe communication is another important
process that characterizes the underground zone.
Some compounds identified in root exudates that
have been shown to play an important role in root-
microbe interactions include flavonoids present in
the root exudates of legumes that activate Rhizobium
meliloti genes responsible for the nodulation process
(Peters et al., 1986). Although the studies are not yet
conclusive, these compounds may also be responsi-
ble for vesicular-arbuscular mycorrhiza colonization
(Becard et al., 1992, 1995; Trieu et al., 1997). In con-
trast, survival of the delicate and physically unpro-
tected root cells under continual attack by pathogenic
microorganisms depends on a continuous “under-
ground chemical warfare” mediated by secretion of
phytoalexins, defense proteins, and other as yet un-
known chemicals (Flores et al., 1999).

The unexplored chemodiversity of root exudates is
an obvious place to search for novel biologically ac-
tive compounds, including antimicrobials. For in-
stance, Bais et al. (2002b) recently identified rosma-
rinic acid (RA) in the root exudates of hairy root
cultures of sweet basil (Ocimum basilicum) elicited by
fungal cell wall extracts from Phytophthora cinnamoni.
Basil roots were also induced to exude RA by fungal

Walker et al.

46 Plant Physiol. Vol. 132, 2003



in situ challenge with Pythium ultimum, and RA dem-
onstrated potent antimicrobial activity against an ar-
ray of soil-borne microorganisms including Pseudo-
monas aeruginosa (Bais et al., 2002b). Similar studies
by Brigham et al. (1999) with Lithospermum erythro-
rhizon hairy roots reported cell-specific production of
pigmented naphthoquinones upon elicitation, and
other biological activity against soil-borne bacteria
and fungi. Given the observed antimicrobial activity
of RA and naphthoquinones, these findings strongly
suggest the importance of root exudates in defending
the rhizosphere against pathogenic microorganisms.
Moreover, the aforementioned studies complement
earlier research that mainly focused on the regulation
and production of these compounds by providing
valuable insights into the biological importance of
RA and shikonin.

Both Gram-negative and -positive bacteria, includ-
ing important plant pathogenic bacteria such as Er-
winia spp., Pseudomonas spp., and Agrobacterium spp.,
possess quorum-sensing systems that control the ex-
pression of several genes required for pathogenicity
(for review, see Fray, 2002). Quorum sensing is a
form of cell-cell communication between bacteria
mediated by small diffusible signaling molecules (au-
toinducers); these are generally acylated homo-Ser
lactones (AHLs) for Gram-negative bacteria and
peptide-signaling molecules for Gram-positive bacte-
ria. Upon reaching a threshold concentration at high-
population densities, an auto-inducer then activates
transcriptional activator proteins that induce specific
genes. Thus, intercellular signals enable a bacterial
population to control the expression of genes in re-
sponse to cell density. A recent review by Fray (2002)
reported that AHL-producing transgenic tobacco
plants restored pathogenicity to an avirulent AHL-
deficient Erwinia carotovora mutant. Root exudates
from pea (Pisum sativum) seedlings were found to
contain several bioactive components that mimicked
AHL signals in well-characterized bacterial reporter
strains, stimulating AHL-regulated behaviors in
some strains while inhibiting such behaviors in oth-
ers. The chemical nature of such active mimic sec-
ondary metabolites is currently unknown (Teplitski
et al., 2000; Knee et al., 2001). However, it was also
reported that crude aqueous extracts from several
plant species exhibited AHL inhibitory activity.
Thus, it is possible that roots may have developed
defense strategies by secreting compounds into the
rhizosphere that interfere with bacterial quorum-
sensing responses such as signal mimics, signal
blockers, and/or signal-degrading enzymes, but fu-
ture studies are required to isolate and characterize
these compounds.

Root-Insect Communication

The study of plant-insect interactions mediated by
chemical signals has largely been confined to leaves

and stems, whereas the study of root-insect commu-
nication has remained largely unexplored due to the
complexity of the rhizosphere and a lack of suitable
experimental systems. However, root herbivory by
pests such as aphids can cause significant decreases
in yield and quality of important crops including
sugar beet (Beta vulgaris), potato (Solanum tuberosum),
and legumes (Hutchison and Campbell, 1994). One
attempt to study root-insect communication was de-
veloped by Wu et al. (1999) using an in vitro cocul-
ture system with hairy roots and aphids. In this
study, it was observed that aphid herbivory reduced
vegetative growth and increased the production of
polyacetylenes, which have been reported to be part
of the phytoalexin response (Flores et al., 1988). In a
more recent study, Bais et al. (2002a) reported the
characterization of fluorescent �-carboline alkaloids
from the root exudates of O. tuberosa (oca). The main
fluorescent compounds were identified as harmine
(7-methoxy-1-methyl-�-carboline) and harmaline (3,
4-dihydroharmine; Bais et al., 2002a; Fig. 1, B–E). In
addition to their fluorescent nature, these alkaloids
exhibit strong phototoxicity against a polyphagous
feeder, Trichoplusia ni, suggesting their insecticidal
activity may be linked to photoactivation (Larson et
al., 1988). The Andean highlands, where O. tuberosa is
primarily cultivated, are subjected to a high inci-
dence of UV radiation, and it was observed that the
strongest fluorescence intensity occurred with oca va-
rieties that showed resistance to the larvae of Mycrot-
rypes spp., the Andean tuber weevil (Flores et al.,
1999). These data suggest that UV light penetrating
soil layers could photoactivate fluorescent �-carboline
alkaloids secreted by oca roots to create an insecticidal
defense response.

ALTERATION OF SOIL CHARACTERISTICS
THROUGH EXUDATION

As a consequence of normal growth and develop-
ment, a large range of organic and inorganic sub-
stances are secreted by roots into the soil, which
inevitably leads to changes in its biochemical and
physical properties (Rougier, 1981). Various func-
tions have been attributed to root cap exudation in-
cluding the maintenance of root-soil contact, lubrica-
tion of the root tip, protection of roots from
desiccation, stabilization of soil micro-aggregates,
and selective adsorption and storage of ions (Griffin
et al., 1976; Rougier, 1981; Bengough and McKenzie,
1997; Hawes et al., 2000). Root mucilage is a reason-
ably studied root exudate that is believed to alter the
surrounding soil as it is secreted from continuously
growing root cap cells (Vermeer and McCully, 1982;
Ray et al., 1988; McCully, 1995; Sims et al., 2000). Soil
at field capacity typically possesses a matric potential
of �5 to �10 kPa (Chaboud and Rougier, 1984). It has
been speculated that as the soil dries and its hydrau-
lic potential decreases, exudates will subsequently
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begin to lose water to soil. When this occurs, the
surface tension of the exudates decreases and its
viscosity increases. As the surface tension decreases,
the ability of the exudates to wet the surrounding soil
particles will become greater. In addition, as viscosity
increases, the resistance to movement of soil particles
in contact with exudates will increase, and a degree
of stabilization within the rhizosphere will be
achieved. For instance, McCully and Boyer (1997)
reported that mucilage from the aerial nodal roots of
maize has a water potential of �11 Mpa, indicating a
large capacity for water storage when fully hydrated,
whereas the mucilage loses water to the soil as it
begins to dry.

This speculation supports the idea that root exu-
dates could play a major role in the maintenance of
root-soil contact, which is especially important to the
plant under drought and drying conditions, when
hydraulic continuity will be lost. The largest, most
coherent soil rhizosheaths are formed on the roots of
grasses in dry soil (Watt et al., 1994). However,
sheath formation requires fully hydrated exudates to
permeate the surrounding soil particles that are then
bonded to the root and each other as the mucilage
dries. Young (1995) found that rhizosheath soil was
significantly wetter than bulk soil and suggested that
exudates within the rhizosheath increase the water-
holding capacity of the soil. Furthermore, it has re-
cently been proposed that in dry soil, the source of
water to hydrate and expand exudates is the root
itself. Modern cryo-scanning microscopy has helped
researchers determine that the rhizosheath of a plant
is more hydrated in the early morning hours com-
pared with the midday samplings (McCully and
Boyer, 1997). This implies that the exudates released
from the roots at night allow the expansion of the
roots into the surrounding soil. When transpiration
resumes, the exudates begin to dry and adhere to the
adjacent soil particles. Thus, the rhizosheath is a
dynamic region, with cyclic fluctuations in hydration
content controlled to some extent by roots.

Taken together, these studies indicate that root ex-
udation plays a major role in maintaining root-soil
contact in the rhizosphere by modifying the biochem-
ical and physical properties of the rhizosphere and
contributing to root growth and plant survival. How-
ever, the exact fate of exuded compounds in the
rhizosphere, and the nature of their reactions in the
soil, remains poorly understood.

CELLULAR MECHANISMS OF ROOT EXUDATION

Subcellular Trafficking of Exuded Metabolites

Despite the ecophysiological significance of plant-
secreted compounds and the large number of com-
pounds that plant cells produce, very little is cur-
rently known about the molecular mechanisms for
the trafficking of phytochemicals. In at least some
plants, channels are likely to be involved in the se-

cretion of organic acids normally present at high
levels in the cytoplasm. A good example is provided
by the exudation of citrate, malate, and related or-
ganic acids by maize and wheat (Triticum aestivum) in
response to high Al3� concentrations (Ma et al.,
2001). However, plants have the potential to express
100,000 compounds, primarily derived from second-
ary metabolism (Verpoorte, 2000), many of them with
cytotoxic activities that would prevent their accumu-
lation in the cytoplasm. The speculation that phyto-
chemicals are transported from the site of synthesis
to the site of storage by vesicles or specialized or-
ganelles is gaining momentum as evidence accumu-
lates regarding the presence of intracellular bodies in
plant cells induced to accumulate large quantities of
secondary metabolites (Grotewold, 2001). For exam-
ple, it has long been known that specific steps of the
isoquinoline alkaloid biosynthetic pathway are se-
questered in alkaloid vesicles and that pathway in-
termediates must traffic from one subcellular com-
partment to another by mechanisms that prevent
their free diffusion in the cytosol (Facchini, 2001).
Subcellular inclusions that accumulate 3-deoxy an-
thocyanidin flavonoid phytoalexins are observed in
sorghum leaves infected by the fungus Colletotrichum
graminicola (Snyder and Nicholson, 1990). These in-
clusions are similar to the anthocyanoplasts observed
in maize cells expressing the C1 and R regulators of
anthocyanin accumulation (Grotewold et al., 1998).

Root exudates often include phenylpropanoids and
flavonoids, presumably synthesized on the cytoplas-
mic surface of the endoplasmic reticulum (ER;
Winkel-Shirley, 2001). For example, the flavone lu-
teolin, secreted by alfalfa (Medicago sativa) seedlings
and seed coats, provides one of the signals that in-
duces the nodulation genes in R. meliloti (Peters et al.,
1986). Cytotoxic and antimicrobial catechin fla-
vonoids are secreted by the roots of knapweed plants
(Bais et al., 2002c). Although the mechanisms by
which these compounds are transported from the ER
to the plasma membrane are not known, it is possible
that they are transported by ER-originating vesicles
that fuse to the cell membrane and release their
contents.

Vesicles with the above-described properties and
containing green autofluorescent compounds have
been identified in maize cells ectopically expressing
the P regulator of 3-deoxy flavonoid biosynthesis
(Grotewold et al., 1998). These vesicles are likely to
originate from the ER, as suggested by the presence
of green fluorescence inside specific regions of the ER
after treatment with brefeldin A. The vesicles fuse
and form large green fluorescent bodies that migrate
to the surface of the cell and fuse to the cell mem-
brane and release the green fluorescent compound to
the cell wall (Grotewold et al., 1998). Interestingly,
the accumulation of the green fluorescence in the cell
wall is increased by treatment with Golgi-disrupting
agents, such as brefeldin A or monensin, suggesting
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a trans-Golgi network-independent pathway for the
secretion of these compounds. Cultured cells of
maize ectopically expressing P also accumulate in-
creased quantities of yellow autofluorescent com-
pounds that are targeted to the central vacuole by
subcellular structures that resemble anthocyano-
plasts (Grotewold et al., 1998). The use of these
autofluorescent compounds, or the fluorescent
�-carbolines present in exudates of O. tuberosa roots
(Bais et al., 2002a), should greatly increase the oppor-
tunities available to study the molecular mechanisms
underlying the secretion of phytochemicals.

ATP-Binding Cassette (ABC) Transporter as an
Alternative to Vesicular Trafficking

The previous section highlighted the possibility of
vesicular trafficking and fusion as a cellular mecha-
nism responsible for root exudation, but could other
mechanisms also be responsible once the compounds
reach the membrane? For example, the involvement
of membrane transporters such as the ABC transport-
ers might be responsible for the secretion of root-
secreted compounds. The ABC superfamily of mem-
brane transporters is one of the largest protein
families, and its members can be found in animals,
bacteria, fungi, and plants. ABC transporters use
ATP hydrolysis to actively transport chemically and
structurally unrelated compounds from cells (Marti-
noia et al., 2002). The recent completion of the Ara-
bidopsis genome research project (Arabidopsis Ge-
nome Initiative, 2000) revealed that Arabidopsis
contains 53 putative ABC transporter genes. How-
ever, the protein localization and function of most of
these genes are largely unknown (Martinoia et al.,
2002). Most of the plant ABC transporters character-
ized to date have been localized in the vacuolar mem-
brane and are believed to be responsible for the in-
tracellular sequestration of cytotoxins (Theodoulou,
2000).

Currently, very little is known about plant plasma
membrane ABC transporters, but the Arabidopsis
AtPGP1, localized to the plasma membrane (Sidler et
al., 1998), has been shown to be involved in cell
elongation by actively pumping auxin from its site of
synthesis in the cytoplasm to appropriate cells (Noh
et al., 2001). Working on the assumption that plasma
membrane ABC transporters might be involved in
the secretion of defense metabolites, and their ex-
pression may be regulated by the concentration of
these metabolites, Jasinski et al. (2002) identified a
plasma membrane ABC transporter (NpABC1) from
Nicotiana plumbaginifolia by treating cell cultures with
various secondary metabolites. Interestingly, addi-
tion of sclareolide, an antifungal diterpene produced
at the leaf surface of Nicotiana spp. (Baily et al., 1975),
resulted in the expression of NpABC1 (Jasinski et al.,
2002). These findings suggest that NpABC1 and
likely other plasma membrane ABC transporters are

involved in the secretion of secondary metabolites
involved in plant defense, but further studies are
required to positively identify plasma membrane
ABC transporters involved in root exudation of spe-
cific compounds.

SPATIAL LOCALIZATION OF ROOT EXUDATES

Major differences in root architecture exist among
plant species (Fitter, 1996), and because different root
classes of the same plant exploit different portions of
the soil and are subject to different external signals, it
has been speculated that they may have different
metabolic activity. In accordance, it has been ob-
served that nutrient influx by plant roots is hetero-
geneous in time and space. In the common bean
(Phaseolus vulgaris), the basal roots have a consis-
tently higher influx rate of nutrients than the other
root classes (i.e. adventitious, lateral, and tap; Liao et
al., 2001; Rubio et al., 2001). This characteristic could
be beneficial for the plant because basal roots gener-
ally explore the topsoil, where the majority of avail-
able nutrients are located (Lynch and Brown, 2001).
Furthermore, Russell and Sanderson (1967) found a
large variation in the phosphorus influx rate among
seminal, nodal, and lateral roots of barley (Hordeum
vulgare). Kuhllmann and Barraclough (1987) ob-
served that the rates of nitrogen uptake by nodal
roots of wheat were up to 6 times higher than those
of seminal roots, but the uptake ratio of potassium
differed to a much smaller extent among root classes.
Despite this large body of evidence linking root ar-
chitecture with root absorption of nutrients, the effect
of root architecture on root exudation has been vir-
tually unexplored.

Another long-standing question is related to the
pattern of root exudation along the longitudinal root
axis. From the base to the tip, most root classes can be
clearly divided into different sections based on
marked dissimilarities in their anatomical character-
istics (Gilroy and Jones, 2000). These sections are
typically the root tip, the elongation zone, the matu-
ration zone, and the matured zone. The root tip in-
cludes two subsections: the root cap and the meris-
tematic region. In the elongation zone, located right
behind the root tip, no cell division occurs, but there
is vigorous cell elongation activity. The next section
is the maturation zone, where xylem vessels are com-
pletely differentiated. Here, some epidermal cells
elongate perpendicularly toward the rhizosphere;
these cells are known as the root hairs. After a short
period of life, root hairs die and this region becomes
the mature zone of the root. The degree of cell vac-
uolization increases from the root tip (where no cell
vacuoles are present) to the base of the root. How this
anatomical heterogeneity along the root axis relates
to the metabolic activity of the roots has concerned
researchers for decades (Prevot and Steward, 1936).

Although the stages of aging correlate well with
the metabolic activity of the root, it is widely recog-
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nized that the gradual maturation of root tissues
along the root axis is not the only source of variation
of metabolic activity (Eshel and Waisel, 1996). Al-
though the large carbon demand in the apical zone
has been traditionally attributed to high biosynthesis
rates, it may also be due to an active root exudation
process. In the case of the influx processes, the ab-
sorption of sulfur is highest in the elongation zone
immediately behind the meristematic region (Holo-
brada, 1977) and that of iron at the apical zones of the
roots. In the case of nitrogen or phosphorus, contrast-
ing results have been found (Colmer and Bloom,
1998).

Much less attention has been focused on the spatial
localization of the root exudation process. The scarce
information available suggests that the pattern of
exudation is not homogeneous along the root axis.
Release of phytosiderophores in response to iron de-
ficiencies appears to be concentrated in the apical
zones of the root (Marschner et al., 1987). Release of
organic anions would also follow a heterogeneous
pattern along the root (Hoffland et al., 1989), which is
consistent with the presence of a pH gradient from
the tip to the base of the root (Fischer et al., 1989). On
the other hand, based on the type of soil and its
surface resistance, root tips may secrete a battery of
compounds to soften the soil to facilitate root growth
(Morel et al., 1991). Although such a mechanism has
been hypothesized for decades, the chemicals in-
volved in this phenomenon have yet to be identified.
An understanding of the spatial and physical local-
ization of the sites of exudation in the roots will
facilitate the elucidation of plant-microbe and plant-
plant interactions. For instance, external signals from
pathogens and invasive plants may determine the
zone of the root where the release of exudates takes
place. If there is any relationship between the pres-
ence of pathogens and invasive plants with the local-
ization of root exudation process, it is virtually un-
known at the present time.

FINAL REMARKS

Due to significant advances in root biology and
current National Science Foundation-funded projects
on genomics of root-specific traits, roots are no
longer considered an unexplored biological frontier.
In contrast, knowledge of rhizospheric processes me-
diated by root exudates has not developed at the
same pace. As highlighted in this update, several
lines of evidence indicate that root exudates in their
various forms may regulate plant and microbial com-
munities in the rhizosphere. It is worth mentioning
that most microbes live in the soil, but just a few of
these organisms have developed compatible interac-
tions with specific plants to become successful plant
pathogens. Instead, the vast majority of microbes
exhibit incompatible interactions with plants, which
could be explained by the constant and diverse se-

cretion of antimicrobial root exudates. The under-
standing of the biology of root exudation processes
may contribute to devising novel strategies for im-
proving plant fitness and the isolation of novel value-
added compounds found in the root exudates.
Received December 23, 2002; returned for revision February 4, 2003; ac-
cepted February 25, 2003.
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