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Abstract Research in recent years on the biology of

guard cells has shown that these specialized cells integrate

both extra- and intra-cellular signals in the control of sto-

matal apertures. Among the phytohormones, abscisic acid

(ABA) is one of the key players regulating stomatal

function. In addition, auxin, cytokinin, ethylene, brassi-

nosteroids, jasmonates, and salicylic acid also contribute to

stomatal aperture regulation. The interaction of multiple

hormones can serve to determine the size of stomatal

apertures in a condition-specific manner. Here, we discuss

the roles of different phytohormones and the effects of their

interactions on guard cell physiology and function.
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Abbreviations

ABA Abscisic acid

ACC 1-Aminocyclopropane-1-carboxylic acid

BRs Brassinosteroids

GA Gibberellins

JA Jasmonate

1-NAA 1-Napthaleneacetic acid

SA Salicylic acid

Introduction

Stomata are natural microscopic pores, each surrounded by

a pair of guard cells. Stomata are present throughout the

leaf epidermis and are also present on other aerial parts of

the plant. Guard cells dynamically regulate the size of

stomatal apertures and thereby control gas exchange by the

plant. The most important function of stomata is to allow

entry of sufficient CO2 for optimal photosynthesis while

conserving water as required by the plant. In addition, these

specialized structures also play critical roles in the control

of leaf temperature by modulating rates of transpirational

water loss, and restrict pathogen invasion via stomatal

closure. Multiple environmental factors such as drought,

CO2 concentration, light, humidity, biotic stresses and

different plant hormones modulate stomatal apertures

(Hirayama and Shinozaki 2007; Israelsson et al. 2006;

MacRobbie and Kurup 2007; Neill et al. 2008; Underwood

et al. 2007). Opening or closure of stomata is achieved by

osmotic swelling or shrinking of guard cells respectively,

driven by transmembrane fluxes of K?, Cl- and malate2-

(Fan et al. 2004; Nilson and Assmann 2007). Reorganiza-

tion of the cytoskeleton, metabolite production, post-

translational modifications of existing cellular proteins and

modulation of gene expression are also key components of

guard cell biology and determinants of stomatal regulation

(Cominelli et al. 2005; Hwang and Lee 2001; Lemichez

et al. 2001; Leonhardt et al. 2004; Liang et al. 2005; Shen

et al. 1995; Shen and Ho 1995).

A diversity of experimental strategies has uncovered

roles for most of the major plant hormones in stomatal

regulation. Among these, ABA plays the over-riding role,

limiting stomatal apertures under conditions of water

stress. In addition, recent work suggests that stomatal

function is also regulated by auxin, cytokinin, ethylene,
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brassionosteroids, jasmonates, and salicylic acid. It is also

evident that these hormones interact during stomatal

regulation.

There are recent reviews describing stomatal responses

to a number of environmental signals and endogenous

components (Hetherington and Woodward 2003; Israelsson

et al. 2006; Pandey et al. 2007; Shimazaki et al. 2007;

Vavasseur and Raghavendra 2005; Wang and Song 2008).

Stomatal regulation by ABA has been particularly well-

reviewed (Fan et al. 2004; Hirayama and Shinozaki 2007;

Schroeder et al. 2001a, b; Wang and Song 2008). Two

reviews describe the participation and interactions between

phytohormones in stomatal regulation (Dodd 2003; Pos-

pı́šilová 2003). Recently, important progress has been

made in elucidating the roles of other hormones in stomatal

function. Accordingly, in this article we focus primarily on

current understanding concerning regulation of stomatal

processes by auxins, cytokinins, ethylene, brassionoster-

oids, jasmonates, and salicylic acid. In addition, the effects

of cross-talk between and among different hormones on

stomatal regulation, particularly the topic of how different

plant hormones impact ABA-mediated stomatal control,

are also discussed (Fig. 1).

ABA

ABA is a terpenoid that is synthesized from carotenoid

precursors (Nambara and Marion-Poll 2005). It has been

reported that ABA concentrations can increase up to

30-fold during drought stress (Outlaw 2003), and other

stresses, such as salinity and cold, also cause ABA

biosynthesis and accumulation. Besides acting as a key

player in response to drought, ABA plays important roles

in plant developmental processes, including cell division,

seed maturation, seed dormancy and germination, and post-

germination seedling growth (Finkelstein et al. 2002;

Leung and Giraudat 1998).

Water deficit promotes ABA biosynthesis, accumula-

tion, and redistribution in the plant body, including

transport from the roots to the shoots in the xylem sap.

Moreover, drought-induced increases in pH of the apoplast

favor extracellular retention of the anionic form of ABA,

which may facilitate ABA delivery to the guard cells

(Wilkinson and Davies 2002). ABA curtails transpirational

water loss by promoting stomatal closure and inhibiting

stomatal opening, and this modulation of stomatal aper-

tures is associated with multiple cascades of cellular-

biochemical events, including activation of G-proteins

(Coursol et al. 2003; Coursol et al. 2005; Wang et al.

2001), production of reactive oxygen species (ROS) (Pei

et al. 2000; Zhang et al. 2001), generation of NO (Bright

et al. 2006; Desikan et al. 2002; Garcia-Mata et al. 2003;

Neill et al. 2002; Sokolovski et al. 2005), elevation of

cytosolic pH (Irving et al. 1992), elevation of cytosolic

Ca2? via both influx across the plasma membrane and

release from cytosolic stores (Allen et al. 2000; Murata

et al. 2001; Pei et al. 2000), protein phosphorylation/

dephosphorylation (Leung et al. 1994; Li et al. 2000;

Merlot et al. 2001; Mustilli et al. 2002), and reorganization

of the cytoskeleton (Hwang and Lee 2001; Lemichez et al.

2001). As a result, activities of cation and anion channels at

the plasma membrane and tonoplast are altered, resulting in

decreases in guard cell concentrations of K?, Cl-, and

malate2- that drive stomatal closure and inhibit stomatal

opening. These components have recently been compiled

into a synthetic and predictive model of guard cell ABA

signaling (Li et al. 2006). Accordingly, below we focus

only on a few key components of the ABA response that

have also been studied in the context of guard cell

responses to other hormones.

In response to ABA, guard cells generate reactive oxy-

gen species (ROS) (Pei et al. 2000; Zhang et al. 2001).

ABA-stimulated ROS production in Arabidopsis guard

cells is mediated redundantly by the NADPH oxidase

catalytic subunits AtrbohD and AtrbohF, as atrbohD/F

double mutants show significantly impaired stomatal clo-

sure in response to ABA (Kwak et al. 2003). Protein

phosphatase 2C proteins, ABI1 and ABI2, are also crucial

for ABA-mediated stomatal regulation (Gosti et al. 1999;

Leung et al. 1997; Merlot et al. 2001). The dominant

negative mutant abi1-1 shows ABA-insensitive stomatal

conductance (Koornneef et al. 1989; Leung et al. 1994),

whereas revertant and loss-of-function recessive mutants
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Fig. 1 A proposed model of hormonal interaction in stomatal

regulation. See text for details (Note: Production of NO in SA-

mediated stomatal closure is inferred but has not been directly

demonstrated to date)
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of ABI1 show hypersensitivity in ABA-mediated stomatal

response, leading to the conclusion that ABI1 is a negative

regulator of ABA signaling. In response to ABA, dominant

abi1-1 mutants do not generate ROS, but the dominant

ABA-insensitive abi2-1 mutant has the ability to generate

ROS. Based on these observations it has been proposed that

ABI1 acts upstream of ROS production and ABI2 down-

stream of ROS production in ABA signaling of guard cells

(Murata et al. 2001). Arabidopsis plants harboring muta-

tions in the open stomata1 (OST1) kinase, a guard cell

expressed Ser/Thr kinase of Arabidopsis and an orthologue

of AAPK in Vicia faba, (Assmann 2003; Li et al. 2000;

Mustilli et al. 2002), also show impairment of ROS pro-

duction and stomatal closure in response to ABA. Physical

interaction of OST1 with ABI1 has been reported (Yoshida

et al. 2006), consistent with the idea that these two proteins

are located adjacent to each other in a signaling pathway

upstream of AtrbohD/F. Generation of nitric oxide (NO) in

guard cells in response to ABA is also critical for stomatal

closure (Neill et al. 2002). Arabidopsis guard cells produce

NO in response to exogenous treatment with ABA. Exog-

enous application of NO donors leads to stomatal closure in

a variety of plant species (Neill et al. 2002), whereas

application of an NO scavenger (e.g. PTIO or cPTIO)

inhibits ABA-induced stomatal closure. In Arabidopsis, in

addition to nitric oxide synthase-like enzymes, nitrate

reductases (NRs) encoded by the genes NIA1 and NIA2,

mediate synthesis of nitric oxide (Desikan et al. 2002; Neill

et al. 2008). The nia1 nia2 double mutant exhibits inability

to synthesize NO and impaired stomatal closure in

response to ABA, suggesting that NO is one of the critical

signaling intermediates in ABA-mediated stomatal closure

(Desikan et al. 2002; Neill et al. 2002). In Arabidopsis and

Vicia faba, generation of NO in response to ABA has been

shown to reside genetically downstream of ROS production

by AtrbohD/F (Bright et al. 2006; Lü et al. 2005). Modu-

lation of pH has been implicated as another signaling event

in ABA-mediated stomatal regulation. In guard cells, ABA

induces alkalinization of the cytosol which activates the

outward K? channels that mediate K? efflux during sto-

matal closure, while acidification of the cytosol causes

activation of inward K? channels (Blatt and Armstrong

1993; MacRobbie 1997; Miedema and Assmann 1996).

Gibberellins (GAs)

Gibberellins (GAs) are diterpine plant hormones with more

than one hundred identified structures, of which only a

small number are biologically active (Yamaguchi 2008).

GAs accelerate many processes of plant development such

as germination, stem elongation, growth, leaf expansion

and seed development (Sun and Gubler 2004; Yamaguchi

2008). In response to water stress, reduced accumulation of

GAs has been observed in some dicots but not in others

(Aharoni et al. 1977; Hubick et al. 1986).

Although GAs commonly oppose ABA action, e.g. in

seed germination, there is remarkably little evidence for

this phenomenon in guard cell biology. Exogenous GA

application appears to have little or no effect on stomatal

apertures in Arabidopsis (Tanaka et al. 2006). Under

darkness, GA application led to transient stomatal opening

in Vicia faba and Fritilaria imperialis (Göring et al. 1990)

and promoted stomatal opening in isolated epidermal strips

of Commelina benghalensis L. (Santakumari and Fletcher

1987). Also, in a study investigating response to water

stress, GA-mediated stomatal response has been examined

in GA-deficient tomato plants. The leaves of GA-deficient

tomato plants did not show significant difference in tran-

spiration in comparison to that of control leaves (Cramer

et al. 1995). This suggests that GAs may not be critical

players during water stress. The role of GAs in stomatal

development has also been studied. GA3 promotes division

of the epidermal cells of Arabidopsis hypocotyls, promot-

ing formation of stomata. In addition, auxin and ethylene

enhance GA-mediated formation of stomatal complexes in

this organ (Saibo et al. 2003).

Auxins

Auxins are a class of plant hormones consisting of indole-

3-acetic acid (IAA) and related molecules with the ability

to induce plant responses similar to those induced by IAA

(Christian et al. 2008). IAA is one of the predominant

naturally occurring forms of auxin in plants. Auxins gen-

erally promote cell division, cell elongation, vascular tissue

differentiation, stem elongation, and apical dominance, and

are essential components in tropic responses (Kepinski

2007). Findings regarding endogenous levels of auxin

(IAA) following water stress are contradictory. An

increased level of IAA has been reported in leaves of

cucumber and in hypocotyls of squash in response to water

stress (Sakurai et al. 1985; Zholkevich and Pustovoitova

1993) but in another study, cucumber plants exposed to

progressive soil drought, showed a decreased level of IAA

until the 4th day, while from the 5th day until the 9th day of

drought stress, an increased level of IAA accumulated

(Pustovoitova et al. 2003). In tomato, however, no signif-

icant change of IAA accumulation was observed in

response to drought stress (Schmelz et al. 2003).

Auxin typically plays a positive regulatory role in sto-

matal opening although high exogenous auxin concen-

trations can inhibit stomatal opening (Lohse and Hedrich

1992). In response to auxin, activation of the plasma

membrane H?-ATPase occurs in guard cells, as in other
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cell types (Lohse and Hedrich 1992). Proton extrusion via

the H?-ATPase leads to hyperpolarization of the mem-

brane, which in turn facilitates K?-uptake. Low auxin

concentrations promote the activity of the inward K?

channels that mediate K? influx during stomatal opening,

while higher auxin concentrations inhibit these channels

and promote the activity of the outward K? channels (Blatt

and Thiel 1994), consistent with the bimodal effects of

auxin on stomatal apertures.

There is evidence that auxin-induced acidification of the

guard cell cytosol and the auxin binding protein1, ABP1,

participate in stomatal responses to auxin (Gehring et al.

1998; Irving et al. 1992; Thiel et al. 1993). In guard cells of

Vicia faba, addition of a peptide consisting of the 12

C-terminal amino acid residues of maize ABPzm1 inacti-

vates K? influx channels and activates K? efflux channels

via elevation of cytosolic pH (Thiel et al. 1993). Similarly,

in Paphiopedilum tonsum, the peptide induces cytoplasmic

alkalization and stomatal closure (Gehring et al. 1998).

However, according to our knowledge, to date there is no

published report using a functional genetics approach to

confirm a role of ABP1 in stomatal function.

Antagonistic stomatal regulation has been observed

between ABA and auxin. Auxin represses stomatal closure

in response to ABA in epidermal peels of Commelina

communis (Snaith and Mansfield 1982) and a similar

oppositional role of auxins was observed when NAA was

applied in combination with ABA to opened stomata in

epidermal peels of Arabidopsis (Tanaka et al. 2006).

Cytokinins

Cytokinins are adenine-derivative molecules with diverse

active forms. Zeatin, dihydrozeatin, and isopentyladenine

are important cytokinins found in higher plants (Dello Ioio

et al. 2008). Cytokinins play positive roles in germination,

root and shoot development, and nodulation, and oppose

leaf senescence and pathogen invasion (Sakakibara 2006;

To and Kieber 2008).

Plants maintain their shoot-water status by decreasing

stomatal apertures in response to drying soil. Stomata

respond to chemicals produced by dehydrating roots even

when leaf water status is kept constant (Davies and Zhang

1991; Gowing et al. 1990). It has been shown that increased

cytokinin concentration in the xylem sap promotes stomatal

opening and simultaneously decreases sensitivity to ABA

(Wilkinson and Davies 2002). Water stress leads to reduced

synthesis of cytokinin in roots and its transport to shoot

(Pospı́šilová 2003; Pustovoitova et al. 2003). Conversely,

transgenic tobacco plants overexpressing the ZOG1 gene,

encoding trans-zeatin o-glucosyltransferase, and exhibiting

an increased level of total cytokinin content (total content of

O-glucosides of trans-zeatin and cis-zeatin), show a delayed

decrease of stomatal aperture in response to water deficit

(Havlova et al. 2008).

Stomatal response to exogenous application of cytokinin

depends on the concentration and cytokinin species. Both

synthetic and natural cytokinins can cause stomatal open-

ing in the grass Anthephora (Jewer and Incoll 1980), and

inhibition of stomatal closure was observed in the amp1-1

cytokinin overproducing mutant of Arabidopsis (Tanaka

et al. 2006), while in the monocot Commelina, inhibition of

stomatal opening in response to a high concentration of

cytokinin has been reported (Blackman and Davies 1983).

Exogenous cytokinins, like auxins, can inhibit ABA-

induced stomatal closure in diverse species (Blackman and

Davies 1983; Das et al. 1976; Jewer and Incoll 1980; Stoll

et al. 2000; Tanaka et al. 2006). Recently it has been shown

that in darkness, cytokinin induces stomatal opening by

decreasing H2O2 levels and NO levels within guard cells

(She and Song 2006; Song et al. 2006).

Ethylene

The gaseous plant hormone ethylene generally promotes

senescence of plant organs, leaf abscission, fruit ripening,

root hair development, stem elongation of aquatic plants,

and adventitious root formation. Ethylene retards stem

elongation and promotes stem thickening in terrestrial

plants. Ethylene also plays a critical signaling role during

biotic stress responses (Bleecker and Kende 2000; Guo and

Ecker 2004). In three dicot species, common bean

(Phaseolus vulgaris L.), cotton (Gossypium hirsutum L.)

and miniature rose (Rosa hybrida L., cv Bluesette), it has

been shown that the rate of ethylene production is not

affected during progressive soil drying (Morgan et al.

1990), although the imposition of rapid drought stress leads

to ethylene production in wheat (Narayana et al. 1991). In

maize plants with compromised ability for ABA-produc-

tion, higher ethylene production has been shown in

response to moderate water stress but not in response to

severe water deficits (Voisin et al. 2006). In non-aquatic

plants, both stomatal closure and increased biosynthesis of

ethylene occur during flooding, suggesting that ethylene

(along with ABA) could be one of the causative agents of

stomatal closure under these conditions (Dat et al. 2004;

Jackson 2002). Taken together, these studies suggest that

the interplay between water stress and ethylene production

is highly species-dependent.

Ethylene causes extra stomatogenesis in both Arabid-

opsis leaves (Serna and Fenoll 1996) and cucumber

hypocotyls (Kazama et al. 2004). As discussed below,

ethylene has been linked to promotion of both stomatal

closure (Pallas and Kays 1982) and stomatal opening
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(Levitt et al. 1987; Madhavan et al. 1983; Merritt et al.

2001).

Exogenous application of ethylene gas, ethephon (an

ethylene-releasing compound), or ACC (the immediate

precursor of ethylene) all promote stomatal closure in

Arabidopsis leaves (Desikan et al. 2006). Ethylene-induced

stomatal closure is inhibited by 1-methylcyclopropane

(1-MCP), a competitive inhibitor of the ethylene receptor,

and is reduced or absent in etr1 ethylene receptor mutants,

as well as in the ethylene signaling mutants ein2-1 and arr2

(Desikan et al. 2006). As discussed previously, H2O2 is one

of the key signaling molecules in ABA-induced stomatal

closure, and ethylene-mediated stomatal closure is depen-

dent on H2O2, generated by the NADPH oxidase AtrbohF

(Desikan et al. 2006).

Unexpectedly, given the above data, ethylene or its

precursor, ACC, also have been shown to oppose stomatal

closure, specifically, ABA-stimulated stomatal closure in

isolated epidermal peels of Arabidopsis (Tanaka et al.

2005; Tanaka et al. 2006). ABA induction of stomatal

closure is also suppressed in plants of the ethylene-over-

producing mutant eto1-1 (Tanaka et al. 2005). Ethylene

biosynthesis/signalling is also required for the opposing

effects of both cytokinins and auxins on ABA-induction of

stomatal closure, since these opposing effects are not

observed in the ein3-1 ethylene-insensitive mutant, or in

the presence of 1-MCP (Tanaka et al. 2006). Ethylene does

not affect dark-induced stomatal closure suggesting that its

inhibitory role in guard cells is specific to the ABA

response.

Because ethylene alone promotes stomatal closure

whereas ethylene in concert with other hormones opposes

stomatal closure, unique and as yet little-understood cross-

talk mechanisms must be activated in the presence of

multiple hormonal stimuli.

Brassinosteroids (BRs)

Brassinosteroids are growth-promoting polyhydoxylated

steroidal plant hormones which positively influence seed

germination, stem elongation, vascular differentiation and

fruit ripening (Clouse and Sasse 1998; Steber and McCourt

2001; Symons et al. 2006), pollen tube growth (Hewitt

et al. 1985), and leaf epinasty (Heping and Shankun 1995;

Schlagnhaufer and Arteca 1985). In cucumber, a role for

BRs in promoting photosynthesis has been reported (Yu

et al. 2004). Also, BRs have been implicated in the acti-

vation of the V-ATPase, which possibly plays a role in

hypocotyl elongation (Schumacher et al. 1999). In addition,

BR-stimulated plasma membrane hyperpolarization and

cell expansion in Arabidopsis suspension cells have been

demonstrated (Zhang et al. 2005).

Whether water stress causes changes in BR levels has

not been investigated in many plant species. Recently, in

pea, it has been shown that the level of castasterone, a

biologically active BR, is not significantly altered by water

stress (Jager et al. 2008), suggesting that the response of

plants during water stress is not regulated by endogenous

BR levels. In addition, in pea, by using BR-deficient

mutants and BR-perception mutants, Jager et al. (2008)

showed that endogenous BRs or perception of same are not

required for plants to respond to water stress. However,

exogenous application of BRs induces water stress toler-

ance in diverse plant species, including cucumber

(Pustovoitova et al. 2001), wheat (Sairam 1994), Phaseolus

vulgaris (Upreti and Murti 2004), Arabidopsis, and Bras-

sica napus (Kagale et al. 2007; Krishna 2003), raising the

question of whether exogenous vs. endogenous BRs have

different roles in water stress, or whether the roles of BRs

are species-specific.

Brassinosteroids regulate stomatal development and

function, and provide another example of a hormone that

cross-talks with ABA during stomatal regulation. Increased

stomatal density has been observed in the Arabidopsis BR

biosynthetic mutant bul1/dwf7 in comparison to wild type

plants (Catterou et al. 2001). Jackpine seedlings pretreated

with homobrassinolide show delayed stomatal closure in

response to water stress (Rajasekaran and Blake 1999). In

contrast, the specific BR, brassinolide (BL), promotes

stomatal closure and inhibits stomatal opening in epidermal

peels of Vicia faba (Haubrick et al. 2006). In addition, the

role of BL has been studied in ion channel regulation in

guard cell protoplasts of Vicia faba, where it has been

shown to inhibit the inwardly rectifying K? channels that

mediate K? uptake during stomatal opening.

In Vicia faba, co-application of BL did not alter the

extent of stomatal response to a given concentration of

ABA, while in whole-plant physiological observations in

sorghum, co-application of epibrassinolide and ABA

resulted in an increased drought-protective effect over that

observed with ABA alone (Xu et al. 1994a, b). Conversely,

a BR-deficient mutant of Arabidopsis, sax1, was reported

to show enhanced stomatal closure in response to ABA

(Ephritikhine et al. 1999). In Arabidopsis, early induction

of drought-inducible genes RD29A, ERD10 and RD22 in

response to epibrassinolide has been shown (Kagale et al.

2007). This suggests possible cross-talk between ABA and

BR signaling. Taken together, these observations suggest

that interactions between BRs, ABA, and guard cell output

may occur in a species-specific manner (Haubrick and

Assmann 2006; Haubrick et al. 2006).

There may also be interactions between BRs and eth-

ylene. An inductive effect of BRs on expression of ACC

synthase in mungbean and Arabidopsis has been reported

(Vert et al. 2005; Yi et al. 1999), and it has been suggested
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that exgenous application of BRs promotes tomato ripening

by increasing endogenous ethylene levels (Vardhini and

Rao 2002). It would be interesting to assess whether eth-

ylene acts as a signaling intermediate during BR-mediated

stomatal regulation.

Jasmonates

Jasmonates are lipid-derived plant hormones regulating

vegetative and reproductive growth, and defense respon-

ses against abiotic stresses (UV light and ozone), insects

and necrotrophic pathogens (Katsir et al. 2008a). The

coronatine-insensitive1 (COI1) gene encodes an F-box

protein that is required for many jasmonate-mediated

responses (Benedetti et al. 1995; Feys et al. 1994; Xie

et al. 1998). The jasmonate ZIM-domain (JAZ) proteins

are transcriptional repressors and play a critical regula-

tory role in jasmonate-mediated signaling (Staswick

2008). Methyl esters (MeJA), glycosyl esters and amide-

linked amino acid conjugates (JA-Ile, JA-Leu, JA-Val

and JA-Phe) are some of the different varieties and

derivatives of jasmonic-acid-related compounds found in

plants (Kramell et al. 1995). MeJA had been considered

as one of the most potent forms of JA in signaling, but

recently it has been established that JA-Ile is the most

active derivative of JA (Guranowski et al. 2007; Staswick

and Tiryaki 2004; Staswick 2008; Thines et al. 2007).

JA-Ile promotes the interaction of COI1 and JAZ1. This

complex subsequently causes degradation of JAZ1 pro-

teins via the 26S proteasome, and this degradation

promotes JA signaling. JA-Val, JA-Leu and JA-Ala are

bioactive JA-derivatives (Katsir et al. 2008b). In contrast,

MeJA does not promote COI1-JAZ1 interaction, indicat-

ing MeJA may not be an active JA derivative. It is yet to

be determined whether MeJA promotes interaction of

COI1 with any other specific member of JAZ family

proteins or whether MeJA is metabolically converted to

bio-active jasmonate derivatives in order to transduce

signals (Thines et al. 2007).

It has been proposed that JA could be an important

player for stomatal closure during drought stress based on

its accumulation during drought (Creelman and Mullet

1997) and its positive regulatory role in stomatal closure

(Gehring et al. 1997; Munemasa et al. 2007; Suhita et al.

2003, 2004). Water-stressed soybean leaves showing a

15% loss of fresh weight accumulated 5-fold more JA

within 2 h but the level of JA declined to that of control

plants by 4 h (Creelman and Mullet 1995). Also, endoge-

nous JA levels can increase more than 50-fold in pathogen-

inoculated leaves, while a greater than 2-fold induction of

JA levels has been shown in systemic leaves of Arabidopsis

plants in response to infection by Alternaria brassicicola

(Penninckx et al. 1996). The stomatal physiology of the

response to pathogen-induced JA in plants is not known.

MeJA-mediated stomatal closure has been associated

with cytoplasmic alkalinization in guard cells, production

of ROS (via AtrbohD/F) and NO, and activation of K?

efflux channels (Evans 2003) and slow anion channels

(Gehring et al. 1997; Munemasa et al. 2007; Suhita et al.

2003; Suhita et al. 2004). These effects are similar to those

of ABA, suggesting an overlapping use of signaling com-

ponents for stomatal closure. This idea is supported by

observations of MeJA hyposensitivity of stomatal closure

in the ost1 (ABA hyposensitive) mutant, and reduced

ABA-mediated stomatal closure in the jar1 (MeJA insen-

sitive) mutant (Suhita et al. 2004).

coi1 mutants do not show stomatal closure, ROS or NO

production, or activation of slow anion channels or Ca2?

permeable channels in response to MeJA, but do so in

response to ABA, suggesting that COI1 is required for

MeJA signaling but not ABA signaling in guard cells

(Munemasa et al. 2007). MeJA-induced stomatal closure

has also been studied in the ABA-insensitive protein

phosphatase 2C mutant, abi2-1. In this mutant, stomatal

closure is not observed in response to either MeJA or ABA,

but production of ROS and NO in response to both MeJA

and ABA are retained. Taken together, these results

indicate that COI1 functions upstream of ROS and NO in

MeJA but not ABA signaling, while ABI2 functions

downstream of ROS and NO after the MeJa- and ABA-

signaling pathways have converged.

As discussed in previous sections, drought can alter the

balance of several different hormones. To specifically

address the role of ABA in JA-mediated stomatal regula-

tion at the whole plant level, the JA-mediated stomatal

response has been studied in ABA-biosynthetic mutant

sitiens tomato plants. When the petioles of sitiens were

incubated in JA, they did not show stomatal closure as

assessed by gas-exchange measurements; however, when

petioles were pre-incubated with ABA, they showed

stomatal closure in response to JA (Herde et al. 1997).

This suggests that, in tomato, the JA-mediated stomatal

response requires ABA. In soybean, exogenous application

of MeJA did not affect endogenous ABA levels, but water-

stressed barley seedlings pretreated with JA showed more

than 4-fold accumulation of ABA in comparison to water

stressed-barley seedlings not pretreated with JA. This

indicates a role for JA in ABA biosynthesis under water

stress conditions (Bandurska et al. 2003). Many drought-

responsive genes are regulated by MeJA (Huang et al.

2008) and several MeJA-regulated, drought-responsive

genes are also regulated by ABA with similar expression

kinetics (Huang et al. 2008; Nemhauser et al. 2006). These

data support overlapping use of signaling components by

ABA and MeJA.
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Salicylic acid (SA)

Salicylic acid (SA) is a phenolic compound with key roles

in pathogen defense, thermogenesis and flowering

(Dempsey et al. 1999; Raskin 1992). While a 2-fold

accumulation of SA has been reported in water-stressed

tomato leaves (this change, however, is not statistically

significant) (Schmelz et al. 2003), in whole-plant physio-

logical observations in Zea mays, exogenous application of

SA suppressed drought tolerance (Németh et al. 2002).

Nevertheless, it has been reported that SA plays a positive

regulatory role in stomatal closure. Application of SA

induces production of ROS (Dong et al. 2001; Mori et al.

2001) and leads to stomatal closure in Vicia faba and

Commelina communis (Lee 1998; Manthe et al. 1992; Mori

et al. 2001). It has been suggested that SA mediates ROS

production not via NADPH oxidases but rather via a per-

oxidase-catalyzed reaction. SA-mediated production of

ROS may lead to elevation of cytosolic Ca2?, thereby

promoting stomatal closure (Mori et al. 2001) and deterring

pathogen invasion via stomatal openings (Melotto et al.

2006).

Stomatal closure in response to bacterial pathogens is

compromised in transgenic NahG plants (deficient in SA)

and in the SA biosynthetic mutant eds16-2, indicating that

SA is required for stomatal defense (Melotto et al. 2008). It

has been proposed that it is the combinatorial action of SA

and ABA signaling pathways that mediates stomatal clo-

sure in response to bacterial pathogens (Melotto et al.

2006). A role for ABA in defense-evoked stomatal closure

has also been confirmed: the ABA-insensitive ost1 mutants

do not show stomatal closure in response to flg22, a

Pathogen Associated Molecular Pattern (PAMP) elicitor,

and the ABA-deficient aba3-1 mutant does not show sto-

matal closure in response to the bacterial pathogen Pst

DC3000 (Melotto et al. 2006). In response to pathogens,

endogenous SA levels can be increased 10-to-100-fold in

local leaves and up to 10-fold in systemic leaves (Dempsey

et al. 1999; Wildermuth et al. 2001). It is yet to be dis-

covered whether basal levels of SA are sufficient for

stomatal closure in response to PAMP elicitors or whether

these elevated levels are required. The status of stomata

during activation of systemic-acquired resistance (SAR) is

also as yet unknown. It would be interesting to discover (at

the whole-plant level), how stomata behave during acti-

vation of SAR, especially since exogenous treatment with

ABA suppresses the induction of SAR in Arabidopsis,

while activation of SAR suppresses induction of ABA

biosynthesis-related genes (Yasuda et al. 2008). It is well

known that SA is one of the important players for activa-

tion of SAR (Delaney et al. 1994; Gaffney et al. 1993).

Although both ABA and SA play positive roles for sto-

matal closure in response to PAMP elicitors, activation of

SAR negatively regulates ABA signaling (Yasuda et al.

2008). This shows condition-specific positive/negative

interaction among ABA and SA.

Conclusions and perspectives

In summary, ABA, JAs, BRs and SA are positive regula-

tors of stomatal closure, while auxins and cytokinins are

generally positive regulators of stomatal opening. In con-

trast, ethylene plays a dual regulatory role on stomatal

apertures in a condition- and species-specific manner.

Interaction of auxin, cytokinin, or ethylene with ABA

inhibits ABA-mediated stomatal closure. Interaction of

ABA and SA positively regulates stomatal closure, and

impedes invasion of bacterial pathogens, while genetic

analyses of components involved in stomatal regulation by

ABA and JAs have identified commonalities in the sig-

naling pathways of these two hormones. In addition to

ABA, the hormones JA, auxin, cytokinin, ethylene, BRs

and gibberellins all modulate expression of drought-related

genes (Huang et al. 2008; Nemhauser et al. 2006), sug-

gesting cross-talk by different signaling pathways during

drought stress, but the effects of such cross-talk on the

guard cell transcriptome have yet to be assessed.

The roles of many hormones in stomatal function have

been studied by exogenous application of specific hor-

mones, which may not always mimic the effects of changes

in endogenous hormone levels. Furthermore, exogenous vs.

endogenous effects may vary between tissue types and

species. Simultaneous quantification of different phyto-

hormones in guard cells during open and closed conditions

would give a more realistic view concerning their roles in

stomatal functions. It also would be interesting to study

stomatal function more extensively in different hormone

biosynthetic mutants; a study such as this might uncover

the regulatory roles played by specific hormones.

Despite recent progress on hormonal control of stomatal

function, many questions remain unanswered. For exam-

ple, ethylene plays a positive regulatory role in stomatal

closure but acts antagonistically to exogenous ABA: what

is the molecular mechanism? While either ABA or JAs

promote stomatal closure and the JA-mediated stomatal

response requires exogenous ABA in ABA-deficient

tomato, stomatal behavior in response to co-application of

these hormones has not yet been studied in wild type

plants: will ABA and JAs act synergistically, additively or

otherwise to achieve maximal stomatal closure?

Many plant hormonal responses are developmental in

nature, whereas hormonal regulation of stomatal apertures

is a reversible, non-developmental process. Are the sub-

cellular targets of hormones discovered in guard cells (e.g.

ion channels) also cellular targets of hormonal regulation in
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irreversible developmental processes, and in specific cell

types other than guard cells? Experiments in years to come

are anticipated to answer these and other questions through

the concerted application of a range of molecular, genetic,

cell biology, and biochemical techniques. A final key

question is whether stomatal regulatory mechanisms,

which to date have been explored primarily in dicot spe-

cies, prevail in other species as well, and in particular

whether they occur in the graminaceous species with their

unique guard cell morphology and dominance in agroeco-

systems. Thus, the ultimate challenge is a comparative

analysis of hormonal regulation of stomatal function

among the diverse plant species that feed and fuel the

planet.
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