
Abstract. Nicotiana repanda Wildenow ex Lehmann
acylates nornicotine in its trichomes to produce N-acyl-
nornicotine (NacNN) alkaloids which are dramatically
more toxic than nicotine is to the nicotine-adapted
herbivore, Manduca sexta. These NacNNs, like nicotine,
were induced by methyl jasmonate (MeJA) and wound-
ing, but the 2-fold increase in NacNN pools was much
faster (within 6 h) than the MeJA-induced increase in
nornicotine pools (24 h to 4 d), its parent substrate.
When 15NOÿ3 pulse-chase experiments with intact and
induced plants were used to follow the incorporation of
15N into alkaloids in di�erent plant parts over the
plant's lifetime, it was found that the root nicotine pool
was most rapidly labeled, followed by the shoot
nornicotine and NacNN pools. After 3 d, 3.12% of
15N acquired was in nicotine (0.93%), nornicotine
(0.32%) and NacNNs (1.73%) while only 0.14% was
in anabasine. Once NacNNs are externalized to the leaf
surface, they are not readily re-distributed within the
plant and are lost with senescing leaves. The wound-
and MeJA-induced N-acylation of nornicotine is inde-
pendent of induced changes in nornicotine pools and the
rapidity of the response suggests its importance in
defense against herbivores.
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Many secondary metabolites that are important in the
resistance of plants against herbivores and pathogens
are rapidly up-regulated after attack (Karban and

Baldwin 1997), and nicotine, the potent poison of
acetylcholine receptors, is a well-studied example (Bald-
win 1999). In a number of Nicotiana species, nicotine
biosynthesis, which is restricted to the roots, is rapidly
induced by herbivore attack, wounding or exogenous
applications of the endogenous wound hormone,
jasmonic acid (JA) or its methyl ester (MeJA; Baldwin
1988a; Baldwin and Ohnmeiss 1993; Baldwin et al. 1996,
1997; McCloud and Baldwin 1997). In tests with native
populations of N. attenuata, MeJA-induced increases in
nicotine are associated with decreased attack from
vertebrate herbivores and higher plant ®tness (Baldwin
1998). Some insects, such as the larvae of Manduca
sexta, specialize on tobacco and have evolved resistance
to nicotine (Self and Guthrie 1964).

Nicotiana repanda, like the other members of the
Repandae section of the genus (N. stocktonii and
N. nesophila), has the ability to acylate nornicotine to
produce a novel group of alkaloids ± hydroxylated and
nonhydroxylated N-acyl-nornicotines (NacNNs). These
structures are about 1000-fold more toxic than nicotine
is to Manduca sexta (Jones et al. 1985; Huesing and
Jones 1988; Severson et al. 1988b) and may have
resulted from cycles of evolutionary responses between
the ancestral plant and insect taxa. Such co-evolutionary
interactions are thought to be an important mechanism
for the diversi®cation of plant secondary metabolites
(Ehrlich and Raven 1964). The hydroxylated and non-
hydroxylated NacNNs di�er in both branching pattern
and chain length (between C12 and C16); the N-(3-
hydroxy-12-methyl-tridecanoyl) nornicotine is the most
abundant structure in N. repanda (Severson et al.
1988a). The length of the acyl chain may in¯uence the
toxicity of the compound to M. sexta since the C14 and
C16 analogues are signi®cantly more toxic than those
with shorter chain lengths (Huesing et al. 1989). Jones
and co-workers (Zador and Jones 1986; Jones et al.
1987) have demonstrated that nornicotine is N-acylated
in the trichomes, and since nicotine is the most abundant
alkaloid in roots, stems and phloem, while nornicotine is
more prevalent in leaves, NacNNs are likely synthesized
from root-produced nicotine that is subsequently
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demethylated in the shoot to nornicotine, acylated in the
trichomes and rapidly excreted to the leaf surface (Zador
and Jones 1986; Jones et al. 1987).

The plant surface is the ®rst interface in the plant-
herbivore interaction. It is therefore not surprising that
trichomes frequently contain defense metabolites (Levin
1973) or that trichome density increases in leaves
produced after herbivore attack (Mauricio et al. 1997;
Agrawal 1998). However, since trichome production and
maturation is limited to short periods early in leaf
development (Huelskamp et al. 1994), they are thought
to function primarily as a constitutive defense. Here we
demonstrate that a trichome-based response, the pro-
duction of NacNNs is rapidly induced, and that its
induction precedes the induction of its parent substrate,
nornicotine.

Plant Growth. Nicotiana repanda Wildenow ex Lehmann seeds
(from Oxford Tobacco Research Station, P.O. Box 1555, Oxford,
N.C., USA) were germinated and grown in soil for 14 d. Approx-
imately 100 plants were transferred to a 25-L hydroponic chamber
containing a complete nutrient solution (Baldwin and Schmelz
1994) and after 5 d, transferred to individual 1-L containers with a
no-N hydroponic solution (Ohnmeiss and Baldwin 1994) supple-
mented with 28 mg N as KNO3. All plants were grown in walk-in
growth rooms (conditions as described by van Dam and Baldwin
1998). After 10 d of growth in the individual chambers, 7.5 mg 15N
as 15N-KNO3 (99.6±99.9 atom%; Isotec, Miamisburg, Ohio, USA)
was added to each hydroponic chamber, de®ning day 0 for each
experiment.

Wounding andMeJA treatments.Three experiments were conducted.
In the ®rst (Fig. 3), roots were induced by adding 250 lg of MeJA
(lot 05310-068; Aldrich) to the hydroponic solution on day 0. Four
replicate control and MeJA-induced plants were harvested each day
on days 1±5 and on days 13, 22 and 36. In experiment 2 (Fig. 2),
plants were induced either with 250 lg ofMeJA applied to the roots,
or shoots were misted, using a glass perfume sprayer, with 500 lg
MeJA suspended in 750 lL distilled water. Control plants were
misted with 750 lL of distilled water. Five replicate plants from the
control treatment and the twoMeJA treatments were harvested at 6,
12, 24 and 48 h after MeJA application. In experiment 3 (data not
shown), ®ve replicate plants were either wounded with a fabric
pattern wheel, with two rolls on each side of the midrib of four fully
expanded leaves (Ohnmeiss et al. 1997), or treated with 100 lg of
MeJA applied to the roots, or left undamaged. All plants were
harvested on day 4.

Chemical analysis. During the rosette-stage, roots and shoots were
harvested and weighed separately. For harvests on days 5, 13, 22

and 36, plants were separated into stems, ¯owers, seed capsules,
and leaves of di�erent stages (young, mature, old, senescing and
dead). The NacNNs were extracted by submerging the plant part
for 30 s in 10 mL of CH2Cl2. Tissues were gently squeezed between
the lid and the base of a 10-cm glass petri dish to improve
extraction. This extract was evaporated and NacNNs were redis-
solved in 1 mL acetonitrile containing 50 lg 2,2¢-pyridil (lot 12025-
047; 97%; Aldrich) as an internal standard. The NacNNs were
separated by HPLC (Fig. 1) on a lBondapack column (30 mm
long, 3.9 mm i.d.; RP-18 125 AÊ 10 lm; Waters) with an isocratic
mobile phase [eluent 60:40 (v/v) acetonitrile:water bu�ered with
o-phosphoric acid and triethylamine to pH 7.3] at a ¯ow rate of
1 mL min)1 (Varian 9012Q pump), and detected at UV 254 (UV
detector Varian 9050). Relative molar response factors between
2,2¢-pyridil and nornicotine were determined and we assumed an
equal response for nornicotine and the NacNNs. The individual
NacNNs were identi®ed by GC-MS analysis of the corresponding
fractions. Nicotine, nornicotine and anabasine contents of roots
and shoots were determined by HPLC as described by Baldwin
(1988b).

Incorporation of 15N into the alkaloids was determined by GC-
MS (HP 5890 ll GC/HP5971 MSD; Hewlett Packard). An aliquot
of the NacNN HPLC sample was dried and silylated with 50 lL
bis(trimethylsilyl)tri¯uoroacetamide (lot 13806ER; Aldrich) in
100 lL N,N-dimethylformamide (DMF) (lot PR051 62LR; Ald-
rich) for 30 min at 65 °C. The trimethylsilyl-NacNN derivatives
were separated after a 30-s splitless injection (250 °C) on a DB-
5 ms GC column (30 m ´ 0.25 mm ´ 0.25 lm; J&W Scienti®c,
Folsom, Calif., USA, the temperature of which was held at 90 °C
for 2 min, increased at 20 °C min)1 to 280 °C and held at 280 °C
for 15 min. The mass spectrometer was scanned with 1.5 scans s)1

from m/z 50 to 550. Single and double 15N incorporations were
determined from the C14OH-NN peak in the chromatograms. The
ion at 175 amu represents the [nornicotine-CO]+ fragment and
exhibited no isotopic discrimination in several test runs. The ion
abundances were averaged over the midsection of the GC peak at
half peak height. Since no NacNN standards are commercially
available, plants grown exclusively with K14NO3 were used as a
reference to determine the natural 13C and 15N contributions to
these ion fragments. The percentage of 15N incorporation was
calculated as:

% single inc. � f�176=�175� 176� 177��sample

ÿ �176=�175� 176� 177��referenceg � 100
% double inc. � f�177=�175� 176� 177��sample

ÿ �177=�175� 176� 177��referenceg � 100
For determination of 15N incorporation into nicotine, nornicotine
and anabasine, 3 mL of the HPLC sample was extracted with
2 mL of CH2Cl2 at pH 12 for 12 h. After centrifugation and
concentration of the CH2Cl2 layer, 1 lL was injected (30 s
splitless) on an RTX-5 Amine GC column (30 m ´ 0.25 mm ´

Fig. 1. Separation by HPLC of hydrox-
ylated (I) and nonhydroxylated NacNNs
(II) in a leaf surface extract of Nicotiana
repanda. Compounds eluted in the fol-
lowing order: IS (2,2¢-pyridil; internal
standard); n = 9 (N-hydroxydodecanoic
acid nornicotine); n = 10 (N-hydroxy-
tridecanoic acid nornicotine); n = 11
(N-hydroxytetradecanoic acid nornico-
tine); n = 12 (N-hydroxypentanoic acid
nornicotine); n = 8 (N-undecanoic acid
nornicotine); n = 9 (N-dodecanoic acid
nornicotine)
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0.5 lm; Restek Bad Soden, Germany). The injector was main-
tained at 250 °C and the oven was programmed as follows: 50 °C
(1 min), 20 °C min)1 to 170 °C, 10 °C min)1 to 210 °C, 20 °C
min)1 to 250 °C (10 min). The mass spectrometer was scanned
from 65 to 170 amu with 5.5 scans s)1. The ions at 119, 120 and
121 (nornicotine) and at 133, 134, 135 amu (nicotine and
anabasine) were chosen for the determination of the isotope
enrichment corresponding to the [M-29]+ fragment (Budzikiewicz
et al. 1964). As reference, a dilution series of nicotine, nornicotine
and anabasine was used.

Statistical analysis. One-way and repeated measures analysis of
variance (ANOVA) as well as Fischer's protected least signi®cant
di�erence (PLSD) test within the ANOVA (Statview 4.5; Abacus
Concepts, Berkeley, Calif., USA) were used to analyze the data.

Treatment of roots or shoots with MeJA increased the
NacNN pools 1.5-fold (6 h, 12 h) to 2.17 fold (24 h,
48 h; Fig. 2). Four days after wounding leaves, NacNN
pools were 4-fold higher in shoots of wounded plants
than in unwounded controls (data not shown). These
increases in shoot NacNN pools were highly signi®cant
(Fig. 2; repeated measures ANOVA F2,30 = 17.758;
P = 0.0005). Interestingly, the increase was as rapid in
plants that had MeJA applied to their roots as it was in
plants receiving leaf treatments (F1,21 = 0.195; P =
0.6718). These results indicate that the rapid acylation of
nornicotine is systemically activated and does not
require wounding or direct stimulation of the leaves or
trichomes for its activation.

This rapid (<6 h) increase in NacNN pools contrasts
with the slower induction of shoot nornicotine pools,

which began to increase at 24 h (1.3-fold) and attained
1.7-fold increases by 48 h (Fig. 2). Both the di�erences
between treatments in nornicotine pools (repeated mea-
sures ANOVA F2,36 = 4.996; P = 0.0264) and the
change over harvests (F3,36 = 13.799; P < 0.0001) were
statistically signi®cant. From these results, we conclude
that the jasmonate-induced increases in NacNN pools
precede induced increases in the nornicotine pools.

The incorporation of 15N into alkaloids is consistent
with the biosynthetic scheme ®rst proposed by Jones and
co-workers (Zador and Jones 1986; Huesing et al. 1989).
The absolute quantities of 15N in the various alkaloids
dramatically illustrate the biosynthetic ¯ux of N among
nicotine in the roots and nornicotine and NacNNs in the
shoots (Fig. 3). The rapid increase in the labeled nicotine
pool in the roots occurs approximately 1 d before a
comparable increase in shoot nornicotine pools (Fig. 3),
which is consistent with the de-novo synthesis of
nicotine from 15NOÿ3 in the roots and its subsequent
demethylation to nornicotine after a delay due to
transport to the shoot. The relative dynamics of the
15N-labeled nornicotine and NacNN pools in the shoot
are comparable (Fig. 3), suggesting that these pools were
rapidly equilibrating (Fig. 3). However, the rate of
increase of 15N in the NacNN pools (43 lg g)1 d)1)
was signi®cantly higher than that of the nornicotine pool
(8 lg g)1 d)1) demonstrating that the ¯ux of 15N into
NacNNs was highly favored (Fig. 3). The sizes of the
15N-labeled pools on day 3 re¯ect the di�erences in the
¯ux: shoot nornicotine pools (24 lg 15N-nornicotine
g)1) were approximately one quarter the size of the
NacNN pools (130 lg 15N-NacNNs g)1). We estimate
that by day 3, plants had used 3.12% of their acquired
15N in the biosynthesis of nicotine (0.93%), nornicotine

Fig. 2. Mean (�SE) N in NacNNs and nornicotine in the shoots of
®ve replicate N. repanda plants harvested 6, 12, 24, 48 h after
induction with MeJA. Plants were induced by application of MeJA
either to the roots (250 lg, d) or to the leaf surface (500 lg, m; see
experiment protocol 2, Materials and methods). h, Control plants

Fig. 3. Mean (�SE) 15N in nicotine (d), nornicotine (m) and
NacNNs (j) in roots, shoots and on leaf surfaces of ®ve replicate
MeJA-induced (250 lg applied to the roots; see experiment protocol
1, Materials and methods) N. repanda plants harvested on days 1 to 3
after induction (left). Flux and pool sizes of 15N from 15NOÿ3 into in
the major alkaloid pools of the roots, shoots and leaf surface (right);
box sizes re¯ect pool sizes on day 3 and arrow thicknesses re¯ect
relative ¯ux between compartments
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(0.32%) and NacNNs (1.73%). In contrast, we estimate
that only 0.14% of their acquired 15N was used in the
synthesis of anabasine by this time. Interestingly, while
the rate of labeling of the anabasine pool was compa-
rable to that of the other alkaloids, the ¯ux into this pool
was one-twentieth of that into the other alkaloids.
Moreover, while the 15N-labeled nicotine and nornico-
tine pools were signi®cantly increased by jasmonate
treatment (repeated measures ANOVA nicotine:
F1,18 = 192.888, P < 0.0001; nornicotine: F1,18 =
29.054, P = 0.0017), the 15N-labeled anabasine pool
was not (F1,18 = 0.322; P = 0.5854). We conclude that
unlike nicotine, nornicotine and the NacNNs, the ¯ux of
N into anabasine biosynthesis is small and not induced
in this species.

The analysis of 15N-labeled alkaloid pools in plants
harvested throughout reproductive maturity and senes-
cence illustrates one of the potential drawbacks of
externalizing lipophilic alkaloids to the leaf surface,
namely the di�culty of re-allocating this investment in
defense to other parts as tissues senesce. On day 5, the
15N-labeled NacNNs were evenly distributed among all
leaf classes. However, by day 13 most of the 15N-labeled
NacNNs were located on senescing leaves (38% of total
pools) and by day 22, 61% of the 15N-labeled NacNN
pools was found on dead and senescing leaves. In
contrast, N. sylvestris produces large quantities of
nicotine and re-allocates this large investment of N to
younger leaves and reproductive parts ± tissues with
high ®tness value ± as the plant ages (Ohnmeiss and
Baldwin 2000).

Here we provide the ®rst demonstration that a
trichome-based defense is rapidly induced. Trichomes
are known to contain potent, but constitutively de-
ployed, defenses. The observation that some of these
may be inducibly deployed focuses attention on the costs
and bene®ts of the rapid chemical changes on the plant
surface, the ®rst interface of plant-herbivore interac-
tions. The ability to rapidly deploy chemicals on the leaf
surface may help a plant optimize its defensive alloca-
tion, particularly if externalizing secondary metabolites
limits a plant's ability to re-deploy the metabolite to
other tissues. On the other hand, not all induced changes
in surface chemistry are bene®cial to plants. For
example, the jasmonate-elicited increase in furanocou-
marins on the leaf surface of Apium graveolens functions
as an oviposition stimulant of the carrot ¯y. (Stanjek
et al. 1997) Clearly, more attention needs to given to
trichome-associated responses in plant-herbivore inter-
actions.
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