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Telomeres are essential structures at the ends of eukaryotic chromosomes. Work on their structure
and function began almost 70 years ago in plants and flies, continued through the Nobel Prize win-
ning work on yeast and ciliates, and goes on today in many model and non-model organisms. The
basic molecular mechanisms of telomeres are highly conserved throughout evolution, and our cur-
rent understanding of how telomeres function is a conglomeration of insights gained from many
different species. This review will compare the current knowledge of telomeres in plants with other
organisms, with special focus on the functional length of telomeric DNA, the search for TRF homo-
logs, the family of POT1 proteins, and the recent discovery of members of the CST complex.
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1. Introduction

Telomeres form the ends of linear eukaryotic chromosomes,
providing them with properties that are essential for long term
genome stability. Telomeres play a dual role in the maintenance
of linear genomes. First, their unique mode of replication, which
involves the highly specialized enzyme telomerase, provides a
solution to the so-called end replication problem, the inability of
polymerases to fully synthesize 5’ ends of DNA. Second, telomeres
shield the natural chromosome ends from DNA damage recogni-
tion machinery which normally responds to DNA breaks occurring
within the chromosome. Owing to the evolutionary conservation of
the telomere-telomerase machinery, telomere research has bene-
fited tremendously from studies in highly diverged organisms. In
fact, this field of research is one of the remarkable examples where
studies in model organisms representing all the major branches of
the tree of life are combined to gain understanding of the func-
tional mechanisms and evolution of a fundamental molecular ma-
chine. While telomeres are most extensively studied in protozoan
ciliates, yeast, mouse and human cell lines, other systems such as
fruit flies, worms and Arabidopsis have also provided important in-
sights. Plants hold some remarkable firsts in telomere biology: the
first evidence for the existence of telomerase activity in the form of
chromosome healing by McClintock in the 40s [1], the first cloning
of higher eukaryotic telomeric DNA by Richards in the late 80s [2],
and, along with humans, the identification of CTC1 last year [3].
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This review aims to summarize recent progress in understanding
how telomeres work in plants as compared to other organisms
by discussing individual components of telomeric chromatin.

2. Telomeric DNA

At the sequence level, canonical telomeres are composed of
simple repeats of a G-rich sequence that, depending on the organ-
ism, extend for tens of basepairs to as much as 150 kilobasepairs.
The sequence repeat varies surprisingly little between organisms
from diverse kingdoms. The strong conservation of telomeric re-
peats is likely a result of the interaction between telomeric DNA
and telomere-specific binding proteins (discussed below). In verte-
brates, the telomeric repeat is TTAGGG while most plants, with
several notable exceptions, have TTTAGGG repeats [4,5]. In the
model algae Chlamydomonas, telomeres are TTTTAGGG [6], and
several plants, including onion and a few species of the Solanaceae
family, lack canonical repeats; the exact structure of telomeres in
these plants remains unknown [7,8]. Interestingly, in a phyloge-
netic clade of Asparagales that consists of ~6300 species, a single
nucleotide change occurred in the canonical plant telomere se-
quence causing a switch to the human TTAGGG sequence [5]. This
was likely caused by a mutation altering the RNA template subunit
of telomerase, and this event is dated to ~80 Mya [9].

In plants as well as in other organisms, the G-rich strand at the
3’ end of the chromosome is longer than the C strand, forming a 3’
G-overhang. Interestingly, early experiments suggested that G-
overhangs exist on only a portion of the telomeres within a plant
[10]. Thus, alternative end-structures may be present in plants,
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as has recently been demonstrated in Ceanorhabditis elegans [11].
The G-overhang is important for forming a tertiary structure
termed the t-loop, where the G-overhang folds back and invades
duplex telomeric DNA, effectively hiding the end of the chromo-
some. T-Loops have been observed in humans, protozoans, and
plants, but so far have not been demonstrated in yeast [12-14].
While the variation in telomere length varies by three orders of
magnitude between species, each species maintains its telomeres
within a narrower size range. Despite this, it is clear from numer-
ous studies that telomeres continue to be functional at lengths
much below the size of a species’ wild type minima. A major ques-
tion remaining in telomere biology is what is the actual minimal
length at which telomeres are still functional? Two primary ap-
proaches have been employed in attempts to define the minimal
functional length: PCR based measurements of the shortest telo-
meres in telomerase deficient cells, and analysis of the number
of telomere repeats recovered in cloned telomeric fusion events
[15,16]. The logic behind these techniques is that once a telomere
reaches a length that is no longer functional, it will be recruited
into a fusion, and no longer be amplified by PCR. Conversely, the
size of the shortest functional telomeres should be close to the size
of the longest array of telomeric repeats retained at fusion junc-
tions. Experiments in Arabidopsis showed that the shortest telo-
meres detected from late generation tert plants were
approximately 350 bp; the absolute shortest telomere detected
was 260 bp. Complementary analysis of sequences at fusion junc-
tions revealed that the amount of telomeric DNA ranged from
120 bp to 450 bp, with an average of 260 bp [15]. These data sug-
gest that the minimal amount of telomeric DNA required for pro-
tection from chromosome end-to-end fusion is within the range
of 260-450 nt. Further work indicated that the first telomeric fu-
sions became detectable when the shortest telomere within a plant
dips below 1 kb, suggesting that Arabidopsis has an approximately
500 bp range within which telomeres are metastable [17].
Similar studies have also been performed in human cells. Xu
and Blackburn discovered that a significant fraction of telomeres
in some telomerase positive human cancers have extremely short
telomeres termed T-stumps, which range in size from 90 to
300 bp [18]. These data suggest that in the presence of telomerase,
t-stumps do not trigger a senescence signal, implying that telome-
rase itself may provide a protective function independent of its cat-
alytic activity. Telomere length and the structure of fusion
junctions were also studied in telomerase negative fibroblasts
transformed with HPV which abrogates p53 and Rb function [16].
In these cells, the XpYp and 17p telomeres shortened to a minimal
length of 54 and 18 bp, respectively. In contrast to an average of
260 bp of telomeric DNA retained at fusion junctions in Arabidop-
sis, the largest block of telomeric DNA retained in these cells was
only 78 bp. Thus, while the minimal functional length is estimated
to be 260-450 bp in Arabidopsis, in humans it is suggested to be
below 100 bp. It was proposed that the minimal length in Arabid-
opsis reflected requirements to form a t-loop [15], while in humans
the minimal length appears to be the shortest amount of DNA
needed to bind TRF1 and TRF2 [16]. Besides the difference in spe-
cies, there are two key differences that must be considered for
these studies, namely, the presence of telomerase and the status
of checkpoint pathways. In the Arabidopsis studies, telomerase
was absent and checkpoints should have been intact. The studies
in humans covered a broader range of conditions, but the only sit-
uation mirroring Arabidopsis tert mutants are primary untrans-
formed fibroblasts, which, without further manipulation, are
destined to enter senescence in response to dysfunctional telo-
meres. In the presence of telomerase, these short telomeres are still
present, but do not lead to senescence [18]. Also, in the absence of
checkpoint machinery, these telomeres are stable and are not re-
cruited into fusions [16]. Thus, the functional length may be differ-

ent depending on the presence of telomerase and checkpoint
machinery.

3. Plant telomerase and its regulation

Composition of the plant telomerase holoenzyme appears to be
similar to vertebrate telomerase. Genes encoding telomerase re-
verse transcriptase (TERT) can readily be identified in plant gen-
omes, and they are more related to the TERTs of vertebrates than
to those in yeast and ciliates [19-21]. Rapid divergence of the
RNA subunit (TR) of telomerase precluded their in silico identifica-
tion in plant genomes, but biochemical purification of Arabidopsis
telomerase led to the recent discovery of two functional TRs in Ara-
bidopsis (D. Shippen, personal communication). This breakthrough
finding is expected to facilitate cloning of TR genes in other plant
species as well.

Dyskerin is another conserved member of the telomerase holo-
enzyme that is shared in vertebrates and Arabidopsis. Dyskerin is a
member of the H/ACA snoRNP gene family which have important
functions in rRNA processing and production. It binds the H/ACA
box of human TR and is involved in TR processing and stabilization
[22]. Mutations in human dyskerin cause dyskeratosis congenita, a
genetic disorder associated with aberrant telomere maintenance
and reduced levels of hTR [23]. In Arabidopsis, dyskerin is also
associated with telomerase in an RNA dependent manner and it
interacts specifically with POT1A [24]. Arabidopsis dyskerin is an
essential gene, but introduction of one of the mutations causing
dyskeratosis congenita results in decreased telomerase activity
in vitro and leads to short but stable telomeres in vivo. This, to-
gether with the observation that dyskerin and TERT co-localize in
the nucleolus, suggests that similar processes may govern telome-
rase maturation in Arabidopsis and vertebrates.

Similar to it’s activity in humans, telomerase activity in plants is
restricted to highly proliferative tissues and the germline [25-27].
Furthermore, studies in tobacco cell culture have shown that telo-
merase activity is regulated in a cell cycle dependent manner with
a peak level in S-phase. This regulation is potentiated by the plant
hormone auxin and antagonized by another phytohormone, absci-
sic acid [28,29].

In Arabidopsis, telomerase regulation appears to be achieved
primarily at the level of transcription of TERT, as transcripts are
undetectable in tissues lacking telomerase activity [19,20]. Further
molecular insights into pathways regulating TERT expression have
been uncovered in Arabidopsis. A genetic screen of activation tag
lines led to the identification of a zinc-finger transcription factor,
TAC1, whose overexpression results in ectopic telomerase activity
in leaves [30]. Interestingly, TAC1 appears to also be involved in
auxin signaling. TAC1 does not directly bind the TERT promoter,
but instead binds to and activates the promoter of BT2, a calmod-
ulin binding protein [31]. Overexpression of BT2 is itself sufficient
for activating telomerase activity in leaves, and increased levels of
calcium are able to overcome the requirement for wild type levels
of auxin in TAC1 mediated regulation of telomerase. It is currently
unclear how the TAC1/BT2 pathway activates TERT expression and
which transcription factors are directly recruited to the TERT
promoter.

While the profile of telomerase activity in rice is similar, tran-
scription does not appear to be the major regulatory mechanism.
Multiple splice variants of the rice TERT gene are present in all tis-
sues, but the correlation of particular splice variants with telome-
rase activity is disputed [32,33]. Splice variants have also been
detected in Arabidopsis. A truncated splice variant of AtTERT is able
to interact with AtPOT1A, which may represent an additional form
of regulation through protein-protein interactions of the truncated
TERT protein [34].
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Regulation of telomerase activity at the telomere is much more
complicated, likely involving multiple proteins and a negative
feedback loop such as the protein counting mechanism discovered
in yeast [35]. Similar to other organisms, telomerase in Arabidopsis
has a preference for elongating shorter telomeres within a plant
[36,37]. While some of the molecular details of this pathway have
been elucidated in yeast, little is known in higher eukaryotes. Est1p
from yeast is a telomerase holoenzyme component involved in
recruiting telomerase to telomeres. In higher eukaryotes, EST1
homologs are primarily involved in the nonsense-mediated RNA
decay (NMD) pathway [38]. Although downregulation of human
EST1 homologs (SMG6, SMG5) have telomere maintenance pheno-
types, these are caused by insufficient decay of telomeric tran-
scripts [39]. Two EST1 homologs have also been identified in
Arabidopsis (SMG7, SMG7L), and while their deficiency leads to
interesting developmental defects, they have no apparent role in
telomere biology [40]. Interestingly, an Est1-like phenotype was
recently described in Arabidopsis plants with a mutation in one
of the POT1 homologs (discussed below) indicating that plants
may utilize a different machinery for telomerase recruitment to
telomeres [41].

4. The search for plant shelterin components

The regulation of telomere synthesis by telomerase and protec-
tion of the chromosome end are implemented through the com-
bined action of numerous proteins that associate with telomeres.
The key elements of telomeric chromatin are specific duplex telo-
mere binding proteins that nucleate the assembly of additional pro-
teins. The bulk of telomeric DNA in mammals is coated with a six-
protein complex called shelterin [42]. The specific binding of shel-
terin to telomeres is mediated by TRF1 and TRF2. TIN1 fulfils a
bridging function in the shelterin complex as it binds to TRF1 and
TRF2 and recruits TPP1 and POT1. The last component of shelterin
is RAP1 which associates with telomeres via an interaction with
TRF2 [43]. Shelterin is assumed to exist in different sub-stochiomet-
ric complexes that recruit a number of other proteins to telomeres.
These shelterin accessory factors mainly consist of proteins in-
volved in DNA damage response and repair [44]. The major telomere
binding complex in Saccharomyces cerevisiae is very different; the
only component of shelterin present in S. cerevisiae is Rap1p. In con-
trast to mammals, Rap1p directly binds to duplex telomeric DNA.
The C-terminal domain of Rap1p recruits either Riflp and Rif2p,
proteins that regulate telomerase activity, or Sir3p and Sir4p, pro-
teins that promote heterochromatin assembly in telomere adjacent
regions [45]. The differences between telomere constituents in
mammals and budding yeast indicated a relatively rapid evolution
of the major telomere binding complex. However, the telomere-
binding complex in fission yeast appears to be functionally and
structurally equivalent to mammalian shelterin [46,47]. This com-
plex is tethered to telomeric DNA via the Taz1 protein which shares
homology with TRF1 and TRF2. Thus, the composition of the shelter-
in complex may be more conserved than was originally hypothe-
sized. This idea is further fuelled by the presence of the TRF1/
TRF2/Taz1 related protein Tbp1 in S. cerevisiae. Although Tbp1p
does not appear to play a role at telomeres, it has a binding affinity
to human type telomeric DNA. Thus, Tbp1p may represent a relict of
the original shelterin-like complex in budding yeast.

The high degree of conservation between plant and vertebrate
telomeric sequences predicts the existence of a shelterin-like com-
plex in plants. However, the functional counterparts of telomere-
binding proteins such as TRF1/TRF2 have not yet been identified.
The search for these proteins is impeded by the presence of a short
telomeric sequence, TTAGGGTTT, in the promoters of many plant
genes [48,49]. Although numerous plant proteins with in vitro
telomeric DNA binding activity have been characterized, many of

them do not appear to act at telomeres, and may rather represent
transcription factors [50]. Two strategies have been employed to
identify plant telomere binding proteins. The first strategy utilizes
identification of proteins based on their affinity to telomeric DNA.
Biochemical purification of protein complexes that bind to single-
stranded (ss) telomeric DNA led to the identification of the GTBP1
protein in tobacco and the STEP1 protein in Arabidopsis [51,52].
Both proteins contain conserved RNA binding motifs and it is cur-
rently unclear whether they play any role in telomere metabolism.
A protein with affinity to duplex telomeric DNA was found by
Southwestern screening of an Arabidopsis expression library [49].
The protein is homologous to mammalian Puro, which is a ubiqui-
tous multifunctional protein involved in transcription, translation
and DNA replication [53]. AtPura interacts with the transcriptional
regulators E2F and TCP20 and it was suggested to regulate tran-
scription of promoters with telomeric motifs [54,55]. The function
of AtPural at telomeres has not been examined.

The second strategy is based on in silico searches for proteins
harboring a Myb/SANT domain that is conserved in TRF1, TRF2,
Taz1 and Tbplp. The characteristic feature of this protein family
is a consensus sequence, VDLKDKWRT, in the third helix of the
Myb/SANT domain that mediates telomeric sequence-specific con-
tacts in the DNA major groove [56,57]. Three classes of proteins
carrying the single Myb/SANT domain have been identified in
plants. The so called SMH (single myb histone) family is repre-
sented by rather small proteins (30-35 kDa) that contain the
Myb/SANT domain at the N-terminus [58]. The Arabidopsis gen-
ome encodes at least three SMH-like proteins (AtTRB1-3), while
five SMH proteins have been identified in maize. Although the
SMH-like proteins specifically bind telomeric DNA in vitro, there
is so far no functional evidence for their role at telomeres.

In addition to the SMH-like family, a survey of the Arabidopsis
genome revealed 12 other proteins carrying a single Myb/SANT do-
main [59]. These proteins contain the Myb/SANT motif at the C-ter-
minus, and therefore are referred to as TRF-like (TRFL) proteins.
The TRFL proteins can further be divided into two groups. The fam-
ily Il proteins (TRFL3, 5, 6, 7, 8, 10) do not form homodimers and
fail to bind telomeric DNA in vitro [59]. The second group of pro-
teins (family I) consists, in Arabidopsis, of six closely related pro-
teins (TBP1, TRP1, TRFL1, TRFL2, TRFL4 and TRFL9) [59-61].
Homologous proteins have also been identified in rice (RTBP1)
and tobacco (NgTRF1) [62,63]. Characteristic features of this family
are a ubiquitin-like domain in the central region and a 40 amino
acid extension of the Myb/SANT domain at the C-terminus. The
family I proteins form homodimers and all of them bind duplex
telomeric DNA in gel-shift assays. Interestingly, the Myb extension
motif is absolutely essential for in vitro DNA binding. Deletion of
the C-terminal extension abolishes DNA binding of AtTRFL1, while
its heterologous fusion to the Myb domain of AtTRFL3 (family II
protein) was sufficient to confer affinity to plant telomeric DNA
[59]. Structural studies of AtTRP1, NgTRF1 and RTBP1 revealed that
the extension domain forms a helix that stabilizes the three helix
bundle of the Myb/SANT domain (Fig. 1) [64-66]. Comparison of
NgTRF1 and human TRF1 structures showed that recognition of
telomeric sequences is well conserved. Most of the specific interac-
tions are mediated by the third helix of the Myb/SANT domain
with bases located in the major groove of the DNA helix (Fig. 1).
The extension domain provides an additional interaction with
the minor groove that is likely responsible for specific binding to
plant telomeric DNA (TTTAGGG) (Fig. 1) [64,66].

Although the family I TRFL proteins are capable of binding telo-
meric DNA in vitro, examination of Arabidopsis mutant lines defi-
cient for either TRFL1, 2 or 4 did not reveal any phenotype
expected to be associated with altered telomere metabolism [59].
Disruption of AtTBP1 leads to gradual telomere lengthening from
2-4kb to 10 kb [67]. No other phenotypes were associated with
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Fig. 1. Structural comparison of the DNA binding domains of NgTRF1 in green and
human TRF1 in yellow. Circled in red is the loop between helix 3 and 4 which
directly contacts the DNA minor groove and provides binding specificity to the
plant telomeric sequence TTTAGGG. Reprinted from Ko et al. (2008) Nucl. Acids Res.
36, 2739-2755 with permission from Oxford University Press.

AtTBP1 dysfunction and mutant plants were fertile. Telomere
lengthening was also observed in tobacco cell lines in which
NgTRF1 was downregulated by siRNA. Furthermore, overexpres-
sion of NgTRF1 in tobacco cells resulted in telomere shortening,
gradual retardation of proliferation and elevated cell death after
prolonged cultivation [68]. It was not reported whether the cell
growth defects were associated with telomere dysfunction. Disrup-
tion of the RTBP1 gene in rice also led to telomere elongation. How-
ever, the rtbp1 plants also exhibited growth defects and reduced
fertility [69]. These phenotypes progressively worsened in subse-
quent generations and their severity correlated with an increasing
frequency of anaphase bridges in meiotic cells. This suggests that
aberrant telomere maintenance may be the underlying cause of
the growth retardation associated with the rtbpl mutation. Gene
redundancy is a likely explanation for the less severe phenotypes
in Arabidopsis than in rice. While the rice genome encodes only
two family I TRFL proteins, the ancestral genome of Arabidopsis
underwent several rounds of duplication resulting in the presence
of at least six genes of this family [59,70]. Telomere lengthening
associated with TRFL deficiency in Arabidopsis, rice, and tobacco
is analogous to deficiency of TRF1 in mammals or Taz1 in S. pombe.
However, the absence of plant proteins is less detrimental for telo-
mere function and survival of the organism than lack of TRF1 or
Taz1. Even the growth retardation observed in rice rtbpl mutants
is relatively mild in comparison to the embryonic lethality of
TRF1 or TRF2 knock-out mice. Therefore, it is likely that the list
of proteins that bind duplex telomeric DNA in plants is far from
complete, and proteins essential for the assembly of telomeric
chromatin remain to be discovered.

5. POT1 proteins

Another evolutionarily conserved component of shelterin is
POT1. POT1 proteins are characterized by two oligosaccharide/oli-
gonucleotide binding motifs (OB-fold) at the N-terminus that

mediate interaction with G-rich single stranded telomeric DNA.
POT1 is thought to fulfil its function through direct association
with the telomeric G-strand, while interaction with TPP1 and the
shelterin complex may facilitate its efficient recruitment to telo-
meres. Pot1 is absolutely essential for telomere protection in fis-
sion yeast and its inactivation leads to a rapid loss of telomeric
DNA [71]. In vertebrates, POT1 represses ATR dependent DNA dam-
age signaling presumably by preventing RPA binding to single-
stranded telomeric DNA [72,73]. The POT1-TPP1 heterodimer has
also been proposed to regulate telomerase activity in both a posi-
tive and negative manner [74,75]. Interestingly, while the majority
of mammalian species, including human, have only one POT1 gene,
rodent genomes contain two closely related POT1 paralogs. These
genes partially diverged in their functions; POT1a is more impor-
tant for inhibiting the DNA damage response while POT1b protects
the telomeric C-strand from resection [76].

POT1 homologs have also been identified in plants. Arabidopsis
encodes three POT1 proteins - POT1A, POT1B and POTI1C
[41,77,78]. The Arabidopsis POT1 proteins are structurally and
functionally more divergent than their mouse counterparts. While
POT1B and POTI1C are implicated in chromosome end protection,
POT1A is associated with telomerase and is required for telomere
synthesis. The telomere capping role of POT1B was inferred from
an experiment in which a C-terminal truncated version of the
POT1B protein harboring only the N-terminal OB domains was ex-
pressed in wild-type plants [77]. Expression of the truncated pro-
tein led to stunted growth in combination with telomere
shortening and genome instability. In contrast to non-plant POT1
proteins, Arabidopsis POT1B does not bind single stranded telo-
meric DNA in vitro [79]. Hence, the protective function of POT1B
may not require direct interaction with DNA and it may be teth-
ered to telomeres through other proteins. An attractive candidate
is POT1C that has also been suggested to play a role in chromo-
some end protection [80]. Arabidopsis POT1A does not appear to
play any role in telomere protection, but instead acts as a positive
regulator of telomerase. Plants expressing a truncated allele of
POT1A lacking the N-terminal OB motifs have, on average, 1-
1.5 kb shorter telomeres [77], and the complete absence of POT1A
results in an ever shorter telomeres (EST) phenotype, identical to
the inactivation of telomerase [41]. Telomeres in potla mutants
shorten at the same rate as telomeres in tert mutants and genetic
analysis revealed that POT1A and telomerase act in the same path-
way. Furthermore, POT1A interacts with telomerase in vivo. This
interaction may be mediated either through direct binding to TERT
or the RNA subunit of telomerase [34,41] (D. Shippen, personal
communication). Chromatin IP showed that POT1A associates with
telomeres only transiently during S-phase, suggesting that POT1A
acts as a recruitment factor that brings telomerase to G-overhangs.
However, POT1A does not bind to single stranded telomeric DNA in
vitro, and hence, an additional bridging protein would be required
for this function. Alternatively, POT1A may have a direct stimula-
tory role on the enzymatic activity of telomerase RNP. This view
is supported by the observation of reduced telomerase activity in
Arabidopsis potla mutants [41].

The data in Arabidopsis suggests that the duplication of POT1
genes in the plant lineage led to a well defined functional diversi-
fication among POT1 paralogs, with POT1B playing a predominant
role in chromosome end protection, while POT1A is exclusively in-
volved in telomerase regulation. However, this division of labor
must have occurred relatively recently as only one POT1 gene
was found in the genomes of many land plants, including papaya,
which diverged from the lineage leading to Arabidopsis 70 Mya
[70,80]. Duplication of the POT1 genes was estimated to occur
34 Mya, when the last common ancestor of the Brassicaceae family
underwent a whole genome duplication. Evolution of the Arabid-
opsis POT1 proteins represents an extraordinary example of rapid
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neofunctionalization within the context of the otherwise highly
conserved chromosome end protection machinery.

6. The CST complex

Budding yeast lack POT1, and the CST complex is the major G-
overhang binding complex that performs essential function in telo-
mere protection and replication. CST is a heterotrimeric complex
that, in S. cerevisiae, consists of Cdc13p and two associated single
OB-fold proteins, Stn1 and Tenl. These three proteins form an
RPA like particle that specifically binds to telomeric G-overhangs
to provide telomere protection [81,82]. Mutations in any compo-
nent of the CST complex are lethal due to massive degradation of
the telomeric C-strand and telomere dysfunction [83-85]. Cdc13p
plays a central role in telomere metabolism as it recruits either the
telomerase RNP or the Stn1/Ten1 heterodimer to the G-overhang.
In addition, Cdc13p and Stn1p physically and functionally interact
with primase, suggesting a role for the CST complex in synthesis of
the telomeric C-strand [86].

Initially, it was believed that the CST complex was unique to
budding yeast and that other organisms primarily use POT1 to
mediate G-overhang protection. However, identification of Stn1
and Ten1 homologs in fission yeast suggested that the telomeric
function of CST is evolutionarily more conserved than was origi-
nally thought [87]. S. pombe Stn1/Ten1 colocalize with Pot1 and
strains deficient for either Stn1 or Ten1 exhibited pot1-like pheno-
types; namely, rapid degradation of telomeric DNA and chromo-
some circularization. Despite these similarities, Pot1 does not
appear to substitute for Cdc13 in fission yeast because it does
not interact with Stn1/Ten1 [87]. Using the yeast sequence as a
query, Stn1 homologs were also found in Arabidopsis and humans
[88,89]. These studies indicated a widespread distribution of the
CST complex in all branches of eukaryotic life, but the homology
searches did not reveal genes orthologous to Cdc13. Two different
approaches led to the identification of functional counterparts of
Cdc13 in these organisms. A forward genetic screen in Arabidopsis
identified a mutant that displayed telomere deprotection pheno-
types such as chromosome end-to-end fusions and aberrant telo-
meric recombination [3]. Genetic mapping led to a locus
encoding a 142 kDa protein that was named Conserved Telomere
Maintenance Component 1 (CTC1). This protein interacts with
STN1 and harbors two C-terminal OB-folds with homology to
RPA70 and an N-terminal OB-fold remotely related to POT1 pro-
teins. The Arabidopsis STN1/CTC1 complex co-localizes with telo-
meres, but it remains to be established whether this occurs
through direct association with G-overhangs [3,88]. PSI-BLAST
using Arabidopsis CTC1 uncovered homologous proteins in many
vertebrates, including human. In a parallel study, human CTC1
was found as a protein associated with STN1 [89]. Human CTC1
forms a trimeric complex with STN1/TEN1, but in contrast to yeast
CST, this complex does not exhibit increased in vitro binding affin-
ity to the telomeric G-strand.

Interestingly, the consequences of CTC1 and STN1 dysfunction
in human cells and Arabidopsis are not as dramatic as in yeast. Hu-
man cells in which CTC1 or STN1 are downregulated by siRNA ex-
hibit accumulation of single stranded telomeric DNA and in some
experimental settings also increased the frequency of dysfunc-
tional telomeres [3,89]. While the relatively mild phenotypes in
human cells may be due to the presence of residual proteins in siR-
NA experiments, genetic analysis in Arabidopsis showed that the
CST complex, while important for proper telomere maintenance,
is not absolutely essential for survival. Phenotypes associated with
CTC1 and STN1 gene disruptions are very similar and include telo-
mere shortening, long G-overhangs, chromosome end-to-end fu-
sions, and aberrant telomeric recombination that is manifested

by excision of extrachromosomal telomeric circles (t-circles)
[3,88]. Nevertheless, Arabidopsis stnl and ctcl mutants are still
alive and even semifertile, and these phenotypes do not worsen
in ctcl stnl double mutants. Thus, unlike in yeast, other compo-
nents of telomeric chromatin are likely to provide sufficient chro-
mosome end protection to support plant viability. The obvious
candidates are the POT1 proteins as suggested by the synergistic
effect of POT1 and STN1 downregulation on telomere protection
in human cell lines [89]. CST may also act in a partially redundant
manner with RPA. Arabidopsis possesses several paralogous genes
for each RPA subunit and this genetic redundancy allows isolation
of viable mutants. A role for the Arabidopsis RPA complex in telo-
mere metabolism is supported by the observation that plants car-
rying a mutation in the RPA70a gene have longer telomeres [90].

7. DNA repair proteins

Although the major function of telomeres is to restrict DNA re-
pair activities at chromosome termini, many proteins involved in
DNA double strand break (DSB) repair and signaling are present
at telomeres. It has been suggested that transient recognition of
a telomere as a DSB during or immediately after DNA replication
is important for both telomere extension by telomerase and forma-
tion of the proper telomere capping structure [91,92]. DSB recogni-
tion and initiation of a DNA damage response largely relies on the
MRN/X (Mre11/Rad50/Nbs1 in mammals and Mre11/Rad50/Xrs2
in yeast) complex and the ATM kinase. Studies in yeast indicate
that this signaling pathway promotes extension of telomeres, pre-
sumably by enhancing recruitment and processivity of telomerase
at the shortest telomeres [93,94]. MRN/X is also implicated in
nucleolytic processing of telomeres to generate G-overhangs
[95,96].

The MRN complex as well as the ATM and ATR kinases appear to
be vital for telomere function in plants as well. Arabidopsis lacking
RAD50 or MRE11 are viable, but exhibit various genome instabili-
ties that include chromosome end-to-end fusions [97,98]. Unlike in
yeast, lack of MRN in Arabidopsis does not alter overall telomere
length homeostasis. However, cytogenetic analysis indicates a
massive loss of telomeric sequence on chromosome termini in-
volved in fusions [97]. Absence of telomerase further exacerbates
the occurrence of chromosome end-to-end fusions in rad50 mu-
tants. Chromosome end-to-end fusions spontaneously occurring
without any obvious change in telomere length were also observed
in atm atr double mutant plants [99]. Interestingly, genetic interac-
tions with telomerase revealed distinct functions for ATM and ATR
at telomeres. While telomeres in atr tert double mutants under-
went accelerated attrition, which was accompanied by an early on-
set of genome instability, the rate of telomere shortening in atm
tert mutants was unaltered. Nevertheless, these plants still exhib-
ited an earlier onset of telomere-dysfunction associated develop-
mental defects. Strikingly, these growth defects could be linked
to a single critically shortened telomere that was involved in the
majority of fusions, while other telomeres appeared to be func-
tional. It was proposed that the short telomere was generated by
arare deletion event that would be normally eliminated. However,
the absence of an ATM-dependent checkpoint allowed propagation
of the affected cells through the germline, which had detrimental
consequences for the following generations [100]. Another DNA re-
pair complex whose mutation enhances genome instability in the
absence of telomerase is the structure specific nuclease XPF/ERCC1.
Inactivation of Arabidopsis XPF (RAD1) or ERCC1 in late generation
telomerase mutants leads to formation of large extrachromosomal
fragments that are proposed to arise from recombination between
dysfunctional telomeres and interstitial telomeric sequences lo-
cated mainly in the vicinity of centromeres [101]. These data sup-
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port a model suggested from a study of TRF2 depleted human cells,
in which the XPF/ERCC1 nuclease prevents ectopic recombination
by removing 3’ G-overhangs from dysfunctional telomeres [102].
One of the most enigmatic DNA repair components of telomeric
chromatin is Ku, a heterodimer consisting of the Ku70 and Ku80
subunits. Ku acts in early steps of the non-homologous end joining
(NHEJ) DNA repair pathway where it binds and stabilizes broken
chromosome ends and facilitates their ligation. Paradoxically,
although fully protected telomeres suppress NHE] activity, Ku is
an intrinsic part of telomeric chromatin and its function is required
for many aspects of telomere metabolism [103,104]. Ku plays a
dual role at telomeres in S. cerivisiae: it suppresses nucleolytic
resection of the 3’ chromosome end and promotes recruitment of
telomerase to telomeres [105-107]. Mouse Ku knock-out strains
exhibit telomere length deregulation, chromosome end-to-end fu-
sions and accelerated aging [108,109]. The consequence of Ku dys-
function was also studied in plants. Disruption of KU70 or KU80
genes in Arabidopsis leads to telomerase dependent telomere elon-
gation, but not to any adverse effects on genome stability or plant
growth and development [110-113]. However, concomitant inacti-
vation of Ku and telomerase leads to accelerated telomere shorten-
ing and early onset of genome instability. This rapid loss of
telomeric DNA is attributed to nucleolytic resection of 5’ chromo-
some ends and to an increased frequency of telomere rapid dele-
tion (TRD) events that can be inferred from a high level of t-
circles in Ku deficient plants [112,114]. Excision of t-circles is as-
sumed to be a consequence of aberrant intrachromatid recombina-
tion and/or t-loop resolution. Further evidence supporting this
suggestion comes from experiments that analyzed long-term sur-
vival of telomerase deficient cells. While yeast and animal cell lines
overcome telomere attrition due to the absence of telomerase by
employing a recombination mechanism for telomere maintenance
(ALT, alternative lengthening of telomeres), ALT cells were never
detected in Arabidopsis TERT deficient cell cultures [115,116].
However, ALT was efficiently activated in cell lines derived from
tert ku70 mutants [114,116]. Thus, supression of recombination
may be a key function of Ku at Arabidopsis telomeres. Interest-
ingly, massive t-circle excision has recently been shown to be
responsible for lethal loss of telomeric DNA in human cells in
which both KUS80 alleles were disrupted by targeted deletions
[117]. While TRD is often observed in mutant backgrounds, it also
occurs with high frequency in wild type plants with dramatically
elongated telomeres. A measurable frequency of TRD has also been
detected at telomeres within the wild type length range, suggest-
ing that TRD can also function as a telomere length regulator [37].

8. Conclusions

On the surface, telomeres look like a highly conserved molecular
structure. However, comparative studies across multiple model
organisms revealed that the exact means by which organisms have
adapted this machinery to achieve chromosome end protection and
replication varies, in some cases remarkably. Recent progress in
plant telomere research highlights several such examples. Among
the most striking is the finding that while plant genomes possess
POT1-like proteins, most of them have lost telomeric DNA binding
activity [80]. The Arabidopsis POT1A protein may instead be a part
of the telomerase complex. POT1A deficiency leads to an ever short-
er telomeres phenotype (EST), typical for mutants lacking the TERT
or TR subunits of telomerase. Mutations in other genes resulting in
EST phenotypes, have so far only been found in budding yeast (EST1,
EST3, CDC13) [118,119], worms (MRT-2) [120] and Arabidopsis
(POT1A) [41]. Interestingly, these genes are structurally unrelated,
indicating that the pathways regulating telomerase activity at telo-
meres may be, in evolutionary terms, very flexible.

On the other hand, many evolutionarily conserved proteins may
provide essentially the same molecular function at telomeres, but
their deficiency may have very different consequences depending
on the organisms. Good examples are CST and Ku, which are re-
quired for protection of the telomeric C-strand in yeast and Arabid-
opsis. While the CST complex is essential in yeast, its inactivation
in Arabidopsis and human cells produces much milder phenotypes
[3,88,89]. This is likely due to additional mechanisms, such as t-
loop formation, that may play a primary capping function in higher
eukaryotes, whereas protection via CST is the predominant path-
way in yeast. Remarkably, Cdc13p is dispensable in budding yeast
that maintain telomeres through recombination, which further
underscores the flexibility in utilization of chromosome end cap-
ping pathways [121]. Deficiency in Ku also results in dramatically
different outcomes for viability in Arabidopsis and humans,
although the key telomeric function of Ku in both organisms is to
inhibit t-circle excision [114,117]. In human cells, t-circle excision
results in extremely rapid loss of telomeric DNA. In Arabidopsis
this process is efficiently counteracted by telomerase, whose activ-
ity is further enhanced in the absence of Ku. Nevertheless, the re-
cent characterization of Ku deficient rice indicates that additional
factors besides telomere extension by telomerase are likely impor-
tant as well. While both Arabidopsis and rice Ku deficient plants
have elongated telomeres, Arabidopsis plants are healthy whereas
rice mutants exhibit growth retardation caused by aberrant telo-
mere function [122]. It will be interesting to determine which fac-
tors modulate this distinct response to Ku dysfunction.

While the basic details of plant telomeres are becoming clearer,
much still remains unknown. The top priority for the near future is
to determine the composition of the plant shelterin complex. The
best candidates for TRF homologs are AtTBP1 in Arabidopsis, RTBP1
in rice, and NgTRF1 in tobacco. However, the phenotypes associ-
ated with mutations in these genes are not as severe as expected
for depleting the major telomere binding complex. Thus, while
the high degree of conservation in telomere structure predicts
the existence of TRF couterparts in plants, the examples of rapid
functional diversification discussed in this review suggest that
non-TRF related proteins should not be excluded from the list of
putative candidates. Regardless of the proteins that will eventually
be found at plant telomeres, the knowledge and experience gained
in their identification and research into the mechanisms by which
they function will certainly provide insight not only into the telo-
mere biology of plants, but telomere biology in general.

Acknowledgements

We thank Hyun-Soo Cho for providing Fig. 1, Dorthy Shippen for
sharing unpublished data, and Anita Kazda for critical reading of
the manuscript. Our work on telomeres is supported by the Aus-
trian Science Fund.

References

[1] McClintock, B. (1941) The stability of broken ends of chromosomes in Zea
mays. Genetics 26, 234-282.

[2] Richards, EJ. and Ausubel, F.M. (1988) Isolation of a higher eukaryotic
telomere from Arabidopsis thaliana. Cell 53, 127-136.

[3] Surovtseva, Y.V. et al. (2009) Conserved telomere maintenance component 1
interacts with STN1 and maintains chromosome ends in higher eukaryotes.
Mol. Cell. 36, 207-218.

[4] Riha, K. and Shippen, D.E. (2003) Telomere structure, function and
maintenance in Arabidopsis. Chromosome Res. 11, 263-275.

[5] Fajkus, J., Sykorova, E. and Leitch, A.R. (2005) Telomeres in evolution and
evolution of telomeres. Chromosome Res. 13, 469-479.

[6] Petracek, M.E., Lefebvre, P.A. Silflow, CD. and Berman, J. (1990)
Chlamydomonas telomere sequences are A+T-rich but contain three
consecutive G-C base pairs. Proc. Natl. Acad. Sci. U.S.A. 87, 8222-8226.

[7] Pich, U.,, Fuchs, J. and Schubert, I. (1996) How do Alliaceae stabilize their
chromosome ends in the absence of TTTAGGG sequences? Chromosome Res.
4,207-213.



3758

[8]

[9

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J-M. Watson, K. Riha/FEBS Letters 584 (2010) 3752-3759

Sykorova, E., Lim, K., Chase, M.\W., Knapp, S., Leitch, L]., Leitch, A.R. and
Fajkus, J. (2003) The absence of Arabidopsis-type telomeres in Cestrum and
closely related genera Vestia and Sessea (Solanaceae): first evidence from
eudicots. Plant J. 34, 283-291.

Adams, S.P., Hartman, T.P., Lim, K.Y., Chase, M.W., Bennett, M.D., Leitch, L].
and Leitch, A.R. (2001) Loss and recovery of Arabidopsis-type telomere repeat
sequences 5'-(TTTAGGG)(n)-3' in the evolution of a major radiation of
flowering plants. Proc. R. Soc. Lond. B Biol. Sci. 268, 1541-1546.

Riha, K., McKnight, T.D., Fajkus, J., Vyskot, B. and Shippen, D.E. (2000) Analysis
of the G-overhang structures on plant telomeres: evidence for two distinct
telomere architectures. Plant J. 23, 633-641.

Raices, M., Verdun, R.E., Compton, S.A., Haggblom, C.I, Griffith, ].D., Dillin, A.
and Karlseder, J. (2008) C. elegans telomeres contain G-strand and C-strand
overhangs that are bound by distinct proteins. Cell 132, 745-757.

Griffith, ].D., Comeau, L., Rosenfield, S., Stansel, R.M., Bianchi, A., Moss, H. and
de Lange, T. (1999) Mammalian telomeres end in a large duplex loop. Cell 97,
503-514.

Munoz-Jordan, J.L., Cross, G.A., de Lange, T. and Griffith, ].D. (2001) t-Loops at
trypanosome telomeres. EMBO J. 20, 579-588.

Cesare, A.J., Quinney, N., Willcox, S., Subramanian, D. and Griffith, ].D. (2003)
Telomere looping in P. sativum (common garden pea). Plant ]. 36, 271-279.
Heacock, M., Spangler, E., Riha, K., Puizina, J. and Shippen, D.E. (2004)
Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for
chromosome end-joining. EMBO J. 23, 2304-2313.

Capper, R, Britt-Compton, B., Tankimanova, M., Rowson, ]., Letsolo, B., Man,
S., Haughton, M. and Baird, D.M. (2007) The nature of telomere fusion and a
definition of the critical telomere length in human cells. Genes Dev. 21,
2495-2508.

Heacock, M.L,, Idol, R.A., Friesner, ].D., Britt, A.B. and Shippen, D.E. (2007)
Telomere dynamics and fusion of critically shortened telomeres in plants
lacking DNA ligase IV. Nucleic Acids Res. 35, 6490-6500.

Xu, L. and Blackburn, E.H. (2007) Human cancer cells harbor T-stumps, a
distinct class of extremely short telomeres. Mol. Cell. 28, 315-327.
Fitzgerald, M.S,, Riha, K, Gao, F., Ren, S., McKnight, T.D. and Shippen, D.E.
(1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis
inactivates telomerase and leads to a slow loss of telomeric DNA. Proc. Natl.
Acad. Sci. U.S.A. 96, 14813-14818.

Oguchi, K., Liu, H., Tamura, K. and Takahashi, H. (1999) Molecular cloning and
characterization of AtTERT, a telomerase reverse transcriptase homolog in
Arabidopsis thaliana. FEBS Lett. 457, 465-469.

Sykorova, E., Leitch, A.R. and Fajkus, J. (2006) Asparagales telomerases which
synthesize the human type of telomeres. Plant Mol. Biol. 60, 633-646.
Collins, K. (2006) The biogenesis and regulation of telomerase holoenzymes.
Nat. Rev. Mol. Cell Biol. 7, 484-494.

Mitchell, J.R., Wood, E. and Collins, K. (1999) A telomerase component is
defective in the human disease dyskeratosis congenita. Nature 402, 551-555.
Kannan, K., Nelson, A.D. and Shippen, D.E. (2008) Dyskerin is a component of
the Arabidopsis telomerase RNP required for telomere maintenance. Mol. Cell
Biol. 28, 2332-2341.

Fitzgerald, M.S., McKnight, T.D. and Shippen, D.E. (1996) Characterization and
developmental patterns of telomerase expression in plants. Proc. Natl. Acad.
Sci. U.S.A. 93, 14422-14427.

Heller, K., Kilian, A., Piatyszek, M.A. and Kleinhofs, A. (1996) Telomerase
activity in plant extracts. Mol. Gen. Genet. 252, 342-345.

Riha, K., Fajkus, ]., Siroky, ]J. and Vyskot, B. (1998) Developmental control of
telomere lengths and telomerase activity in plants. Plant Cell. 10, 1691-
1698.

Tamura, K, Liu, H. and Takahashi, H. (1999) Auxin induction of cell cycle
regulated activity of tobacco telomerase. J. Biol. Chem. 274, 20997-21002.
Yang, S.W., Jin, E., Chung, LK. and Kim, W.T. (2002) Cell cycle-dependent
regulation of telomerase activity by auxin, abscisic acid and protein
phosphorylation in tobacco BY-2 suspension culture cells. Plant J. 29, 617-
626.

Ren, S., Johnston, ].S., Shippen, D.E. and McKnight, T.D. (2004) Telomerase
activator1 induces telomerase activity and potentiates responses to auxin in
Arabidopsis. Plant Cell. 16, 2910-2922.

Ren, S., Mandadi, K.K., Boedeker, A.L., Rathore, K.S. and McKnight, T.D. (2007)
Regulation of telomerase in Arabidopsis by BT2, an apparent target of
telomerase activatorl1. Plant Cell. 19, 23-31.

Heller-Uszynska, K., Schnippenkoetter, W. and Kilian, A. (2002) Cloning and
characterization of rice (Oryza sativa L) telomerase reverse transcriptase,
which reveals complex splicing patterns. Plant J. 31, 75-86.

Oguchi, K., Tamura, K. and Takahashi, H. (2004) Characterization of Oryza
sativa telomerase reverse transcriptase and possible role of its
phosphorylation in the control of telomerase activity. Gene 342, 57-66.
Rossignol, P. Collier, S., Bush, M., Shaw, P. and Doonan, J.H. (2007)
Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing
variant of telomerase. J. Cell Sci. 120, 3678-3687.

Marcand, S., Gilson, E. and Shore, D. (1997) A protein-counting mechanism
for telomere length regulation in yeast. Science 275, 986-990.

Shakirov, E.V. and Shippen, D.E. (2004) Length regulation and dynamics of
individual telomere tracts in wild-type Arabidopsis. Plant Cell. 16, 1959-
1967.

Watson, J.M. and Shippen, D.E. (2006) Telomere rapid deletion regulates
telomere length in Arabidopsis thaliana. Mol. Cell Biol.

[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Conti, E. and Izaurralde, E. (2005) Nonsense-mediated mRNA decay:
molecular insights and mechanistic variations across species. Curr. Opin.
Cell Biol. 17, 316-325.

Azzalin, C.M.,, Reichenbach, P., Khoriauli, L., Giulotto, E. and Lingner, J. (2007)
Telomeric repeat containing RNA and RNA surveillance factors at mammalian
chromosome ends. Science 318, 798-801.

Riehs, N. et al. (2008) Arabidopsis SMG7 protein is required for exit from
meijosis. ]. Cell Sci. 121, 2208-2216.

Surovtseva, Y.V., Shakirov, E.V., Vespa, L., Osbun, N., Song, X. and Shippen, D.E.
(2007) Arabidopsis POT1 associates with the telomerase RNP and is required
for telomere maintenance. EMBO ]. 26, 3653-3661.

de Lange, T. (2005) Shelterin: the protein complex that shapes and safeguards
human telomeres. Genes Dev. 19, 2100-2110.

Li, B., Oestreich, S. and de Lange, T. (2000) Identification of human Rap1:
implications for telomere evolution. Cell 101, 471-483.

Palm, W. and de Lange, T. (2008) How shelterin protects mammalian
telomeres. Annu. Rev. Genet. 42, 301-334.

Bianchi, A. and Shore, D. (2008) How telomerase reaches its end: mechanism
of telomerase regulation by the telomeric complex. Mol. Cell. 31, 153-165.
Miyoshi, T., Kanoh, J., Saito, M. and Ishikawa, F. (2008) Fission yeast Pot1-
Tpp1 protects telomeres and regulates telomere length. Science 320, 1341-
1344.

Tomita, K. and Cooper, J.P. (2008) Fission yeast Ccql is telomerase recruiter
and local checkpoint controller. Genes Dev. 22, 3461-3474.

Manevski, A., Bertoni, G., Bardet, C., Tremousaygue, D. and Lescure, B. (2000)
In synergy with various cis-acting elements, plant interstitial telomere motifs
regulate gene expression in Arabidopsis root meristems. FEBS Lett. 483, 43—
46.

Tremousaygue, D., Manevski, A., Bardet, C., Lescure, N. and Lescure, B. (1999)
Plant interstitial telomere motifs participate in the control of gene expression
in root meristems. Plant J. 20, 553-561.

Zellinger, B. and Riha, K. (2007) Composition of plant telomeres. Biochim.
Biophys. Acta 1769, 399-409.

Hirata, Y., Suzuki, C. and Sakai, S. (2004) Characterization and gene cloning of
telomere-binding protein from tobacco BY-2 cells. Plant Physiol. Biochem. 42,
7-14.

Kwon, C., Kwon, K., Chung, LK., Kim, S.Y., Cho, M.H. and Kang, B.G. (2004)
Characterization of single stranded telomeric DNA-binding proteins in
cultured soybean (Glycine max) cells. Mol. Cell. 17, 503-508.

White, M.K., Johnson, E.M. and Khalili, K. (2009) Multiple roles for Puralpha in
cellular and viral regulation. Cell Cycle 8, 1-7.

Rossignol, P., Stevens, R., Perennes, C., Jasinski, S., Cella, R., Tremousaygue, D.
and Bergounioux, C. (2002) AtE2F-a and AtDP-a, members of the E2F family
of transcription factors, induce Arabidopsis leaf cells to re-enter S phase. Mol.
Genet. Genomics 266, 995-1003.

Tremousaygue, D., Garnier, L., Bardet, C., Dabos, P., Herve, C. and Lescure, B.
(2003) Internal telomeric repeats and ‘TCP domain’ protein-binding sites
cooperate to regulate gene expression in Arabidopsis thaliana cycling cells.
Plant J. 33, 957-966.

Brun, C., Marcand, S. and Gilson, E. (1997) Proteins that bind to double-
stranded regions of telomeric DNA. Trends Cell Biol. 7, 317-324.

Court, R., Chapman, L., Fairall, L. and Rhodes, D. (2005) How the human
telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from
high- resolution crystal structures. EMBO Rep. 6, 39-45.

Marian, C.O. et al. (2003) The maize Single myb histone 1 gene, Smhl,
belongs to a novel gene family and encodes a protein that binds telomere
DNA repeats in vitro. Plant Physiol. 133, 1336-1350.

Karamysheva, Z.N., Surovtseva, Y.V., Vespa, L., Shakirov, E.V. and Shippen, D.E.
(2004) A C-terminal Myb extension domain defines a novel family of double-
strand telomeric DNA-binding proteins in Arabidopsis. ]J. Biol. Chem. 279,
47799-47807.

Chen, C.M., Wang, C.T. and Ho, C.H. (2001) A plant gene encoding a Myb-like
protein that binds telomeric GGTTAG repeats in vitro. J. Biol. Chem. 276,
16511-16519.

Hwang, M.G., Chung, LK., Kang, B.G. and Cho, M.H. (2001) Sequence-specific
binding property of Arabidopsis thaliana telomeric DNA binding protein 1
(AtTBP1). FEBS Lett. 503, 35-40.

Yang, SW., Kim, D.H., Lee, ]J., Chun, Y]., Lee, ]H., Kim, Y.J., Chung, L.K. and
Kim, W.T. (2003) Expression of the telomeric repeat binding factor gene
NgTRF1 is closely coordinated with the cell division program in tobacco BY-2
suspension culture cells. J. Biol. Chem. 278, 21395-21407.

Yu, EY, Kim, S.E,, Kim, J.H., Ko, JH., Cho, M.H. and Chung, LK. (2000)
Sequence-specific DNA recognition by the Myb-like domain of plant
telomeric protein RTBP1. ]. Biol. Chem. 275, 24208-24214.

Ko, S. et al. (2008) Structure of the DNA-binding domain of NgTRF1 reveals
unique features of plant telomere-binding proteins. Nucleic Acids Res. 36,
2739-2755.

Sue, S.C,, Hsiao, H.H., Chung, B.C., Cheng, Y.H., Hsueh, K.L., Chen, C.M., Ho, C.H.
and Huang, T.H. (2006) Solution structure of the Arabidopsis thaliana
telomeric repeat-binding protein DNA binding domain: a new fold with an
additional C-terminal helix. J. Mol. Biol. 356, 72-85.

Ko, S. et al. (2009) Solution structure of the DNA binding domain of rice
telomere binding protein RTBP1. Biochemistry 48, 827-838.

Hwang, M.G. and Cho, M.H. (2007) Arabidopsis thaliana telomeric DNA-
binding protein 1 is required for telomere length homeostasis and its Myb-



[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]
[92]

[93]

[94]

J-M. Watson, K. Riha/FEBS Letters 584 (2010) 3752-3759

extension domain stabilizes plant telomeric DNA binding. Nucleic Acids Res.
35, 1333-1342.

Yang, S.W., Kim, S.K. and Kim, W.T. (2004) Perturbation of NgTRF1 expression
induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1
in the control of telomere length and stability. Plant Cell.

Hong, J.P., Byun, M.Y., Koo, D.H., An, K., Bang, ] W., Chung, LK., An, G. and Kim,
W.T. (2007) Suppression of rice telomere binding protein 1 results in severe
and gradual developmental defects accompanied by genome instability in
rice. Plant Cell. 19, 1770-1781.

Shakirov, E.V,, Salzberg, S.L., Alam, M. and Shippen, D.E. (2008) Analysis of
Carica papaya telomeres and telomere-associated proteins: insights into
evolution of telomere maintenance in Brassicales. Tropical Plant Biol., 202-
215.

Baumann, P. and Cech, T.R. (2001) Pot1, the putative telomere end-binding
protein in fission yeast and humans. Science 292, 1171-1175.

Denchi, EL. and de Lange, T. (2007) Protection of telomeres through
independent control of ATM and ATR by TRF2 and POT1. Nature 448,
1068-1071.

Churikov, D. and Price, C.M. (2008) Pot1 and cell cycle progression cooperate
in telomere length regulation. Nat. Struct. Mol. Biol. 15, 79-84.

Xin, H., Liu, D., Wan, M., Safari, A., Kim, H., Sun, W., O’Connor, M.S. and
Songyang, Z. (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts
with POT1 to recruit telomerase. Nature 445, 559-562.

Wang, F.,, Podell, E.R,, Zaug, AJ., Yang, Y., Baciu, P., Cech, T.R. and Lei, M.
(2007) The POT1-TPP1 telomere complex is a telomerase processivity factor.
Nature 445, 506-510.

Hockemeyer, D., Daniels, ].P., Takai, H. and de Lange, T. (2006) Recent
expansion of the telomeric complex in rodents: two distinct POT1 proteins
protect mouse telomeres. Cell 126, 63-77.

Shakirov, E.V., Surovtseva, Y.V., Osbun, N. and Shippen, D.E. (2005) The
Arabidopsis Pot1 and Pot2 proteins function in telomere length homeostasis
and chromosome end protection. Mol. Cell Biol. 25, 7725-7733.

Tani, A. and Murata, M. (2005) Alternative splicing of Pot1 (Protection of
telomere)-like genes in Arabidopsis thaliana. Genes Genet. Syst. 80, 41-48.
Shakirov, E.V., McKnight, T.D. and Shippen, D.E. (2009) POT1-independent
single-strand telomeric DNA binding activities in Brassicaceae. Plant J. 58,
1004-1015.

Shakirov, E.V,, Song, X., Joseph, J.A. and Shippen, D.E. (2009) POT1 proteins in
green algae and land plants: DNA-binding properties and evidence of co-
evolution with telomeric DNA. Nucleic Acids Res. 37, 7455-7467.

Gao, H., Cervantes, R.B., Mandell, E.K,, Otero, J.H. and Lundblad, V. (2007)
RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14,
208-214.

Sun, J., Yu, E\Y,, Yang, Y., Confer, LA, Sun, S.H., Wan, K, Lue, N.F. and Lei, M.
(2009) Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres. Genes Dev. 23,
2900-2914.

Grandin, N., Damon, C. and Charbonneau, M. (2001) Tenl functions in
telomere end protection and length regulation in association with Stn1 and
Cdc13. EMBO J. 20, 1173-1183.

Grandin, N., Reed, S.I. and Charbonneau, M. (1997) Stn1, a new Saccharomyces
cerevisiae protein, is implicated in telomere size regulation in association
with Cdc13. Genes Dev. 11, 512-527.

Nugent, C.I, Hughes, T.R,, Lue, N.F. and Lundblad, V. (1996) Cdc13p: a single-
strand telomeric DNA-binding protein with a dual role in yeast telomere
maintenance. Science 274, 249-252.

Qi, H. and Zakian, V.A. (2000) The Saccharomyces telomere-binding protein
Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha
and the telomerase-associated est1 protein. Genes Dev. 14, 1777-1788.
Martin, V., Du, LL, Rozenzhak, S. and Russell, P. (2007) Protection of
telomeres by a conserved Stn1-Tenl complex. Proc. Natl. Acad. Sci. U.S.A.
104, 14038-14043.

Song, X., Leehy, K., Warrington, R.T., Lamb, ].C., Surovtseva, Y.V. and Shippen,
D.E. (2008) STN1 protects chromosome ends in Arabidopsis thaliana. Proc.
Natl. Acad. Sci. U.S.A. 105, 19815-19820.

Miyake, Y., Nakamura, M., Nabetani, A., Shimamura, S., Tamura, M., Yonehara,
S., Saito, M. and Ishikawa, F. (2009) RPA-like mammalian Ctc1-Stn1-Ten1
complex binds to single-stranded DNA and protects telomeres independently
of the Pot1 pathway. Mol. Cell. 36, 193-206.

Takashi, Y., Kobayashi, Y., Tanaka, K. and Tamura, K. (2009) Arabidopsis
replication protein A 70a is required for DNA damage response and telomere
length homeostasis. Plant Cell. Physiol. 50, 1965-1976.

Verdun, R.E. and Karlseder, ]. (2007) Replication and protection of telomeres.
Nature 447, 924-931.

Gilson, E. and Geli, V. (2007) How telomeres are replicated. Nat. Rev. Mol. Cell
Biol. 8, 825-838.

Sabourin, M., Tuzon, C.T. and Zakian, V.A. (2007) Telomerase and Tellp
preferentially associate with short telomeres in S. cerevisiae. Mol. Cell. 27,
550-561.

Chang, M., Arneric, M. and Lingner, J. (2007) Telomerase repeat addition
processivity is increased at critically short telomeres in a Tell-dependent
manner in Saccharomyces cerevisiae. Genes Dev. 21, 2485-2494.

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

3759

Larrivee, M., LeBel, C. and Wellinger, R.J. (2004) The generation of proper
constitutive G-tails on yeast telomeres is dependent on the MRX complex.
Genes Dev. 18, 1391-1396.

Deng, Y., Guo, X, Ferguson, D.O. and Chang, S. (2009) Multiple roles for
MRE11 at uncapped telomeres. Nature 460, 914-918.

Vannier, ].B., Depeiges, A., White, C. and Gallego, M.E. (2006) Two roles for
Rad50 in telomere maintenance. EMBO J. 25, 4577-4585.

Puizina, ]., Siroky, ], Mokros, P., Schweizer, D. and Riha, K. (2004) Mrel1
deficiency in Arabidopsis is associated with chromosomal instability in
somatic cells and Spol1-dependent genome fragmentation during meiosis.
Plant Cell. 16, 1968-1978.

Vespa, L., Couvillion, M., Spangler, E. and Shippen, D.E. (2005) ATM and ATR
make distinct contributions to chromosome end protection and the
maintenance of telomeric DNA in Arabidopsis. Genes Dev. 19, 2111-2115.
Vespa, L., Warrington, R.T., Mokros, P., Siroky, J. and Shippen, D.E. (2007) ATM
regulates the length of individual telomere tracts in Arabidopsis. Proc. Natl.
Acad. Sci. US.A. 104, 18145-18150.

Vannier, ].B., Depeiges, A., White, C. and Gallego, M.E. (2009) ERCC1/XPF
protects short telomeres from homologous recombination in Arabidopsis
thaliana. PLoS Genet. 5, e1000380.

Zhu, X.D., Niedernhofer, L., Kuster, B., Mann, M., Hoeijmakers, J.H. and de
Lange, T. (2003) ERCC1/XPF removes the 3’ overhang from uncapped
telomeres and represses formation of telomeric DNA-containing double
minute chromosomes. Mol. Cell. 12, 1489-1498.

Riha, K., Heacock, M.L. and Shippen, D.E. (2006) The role of the
nonhomologous end-Joining DNA double-strand break repair pathway in
telomere biology. Annu. Rev. Genet. 40, 237-277.

Fisher, T.S. and Zakian, V.A. (2005) Ku: a multifunctional protein involved in
telomere maintenance. DNA Repair (Amst) 4, 1215-1226.

Gravel, S., Larrivee, M., Labrecque, P. and Wellinger, R.J. (1998) Yeast Ku as a
regulator of chromosomal DNA end structure. Science 280, 741-744.
Fisher, T.S., Taggart, AK. and Zakian, V.A. (2004) Cell cycle-dependent
regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol. 11, 1198-1205.
Stellwagen, A.E., Haimberger, ZW., Veatch, J.R. and Gottschling, D.E. (2003)
Ku interacts with telomerase RNA to promote telomere addition at native
and broken chromosome ends. Genes Dev. 17, 2384-2395.

d’Adda di Fagagna, F., Hande, M.P., Tong, W.M., Roth, D., Lansdorp, P.M.,
Wang, Z.Q. and Jackson, S.P. (2001) Effects of DNA nonhomologous end-
joining factors on telomere length and chromosomal stability in mammalian
cells. Curr. Biol. 11, 1192-1196.

Espejel, S., Franco, S., Rodriguez-Perales, S., Bouffler, S.D., Cigudosa, J.C. and
Blasco, M.A. (2002) Mammalian Ku86 mediates chromosomal fusions and
apoptosis caused by critically short telomeres. EMBO J. 21, 2207-2219.
Bundock, P., van Attikum, H. and Hooykaas, P. (2002) Increased telomere
length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70
mutant. Nucleic Acids Res. 30, 3395-3400.

Riha, K., Watson, J.M., Parkey, J. and Shippen, D.E. (2002) Telomere length
deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis
mutants deficient in Ku70. EMBO ]. 21, 2819-2826.

Riha, K. and Shippen, D.E. (2003) Ku is required for telomeric C-rich strand
maintenance but not for end-to-end chromosome fusions in Arabidopsis.
Proc. Natl. Acad. Sci. U.S.A. 100, 611-615.

Gallego, M.E,, Jalut, N. and White, C.I. (2003) Telomerase dependence of
telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell. 15, 782-789.
Zellinger, B., Akimcheva, S., Puizina, J., Schirato, M. and Riha, K. (2007) Ku
suppresses formation of telomeric circles and alternative telomere
lengthening in Arabidopsis. Mol. Cell. 27, 163-169.

Watson, .M., Bulankova, P., Riha, K., Shippen, D.E. and Vyskot, B. (2005)
Telomerase-independent cell survival in Arabidopsis thaliana. Plant J. 43,
662-674.

Akimcheva, S., Zellinger, B. and Riha, K
Arabidopsis cells exhibiting alternative
Cytogenet. Genome Res. 122, 388-395.
Wang, Y., Ghosh, G. and Hendrickson, E.A. (2009) Ku86 represses lethal
telomere deletion events in human somatic cells. Proc. Natl. Acad. Sci. U.S.A.
106, 12430-12435.

Lendvay, T.S., Morris, D.K,, Sah, J., Balasubramanian, B. and Lundblad, V.
(1996) Senescence mutants of Saccharomyces cerevisiae with a defect in
telomere replication identify three additional EST genes. Genetics 144, 1399-
1412.

Lundblad, V. and Szostak, J.W. (1989) A mutant with a defect in telomere
elongation leads to senescence in yeast. Cell 57, 633-643.

Ahmed, S. and Hodgkin, J. (2000) MRT-2 checkpoint protein is required for
germline immortality and telomere replication in C. elegans. Nature 403,
159-164.

Larrive, M. and Wellinger, R.J. (2006) Telomerase- and capping-independent
yeast survivors with alternate telomere states. Nat. Cell Biol. 8, 741.

Hong, J.P., Byun, M.Y., An, K,, Yang, S.J., An, G. and Kim, W.T. (2010) OsKu70 is
associated with developmental growth and genome stability in rice. Plant
Physiol 152, 374-387.

(2008) Genome stability in
lengthening of telomeres.



