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Summary

All nutrients that plants absorb have to pass a region of intense interactions between
roots, microorganisms and animals, termed the rhizosphere. Plants allocate a great
portion of their photosynthetically fixed carbon to root-infecting symbionts, such as
mycorrhizal fungi; another part is released as exudates fuelling mainly free-living
rhizobacteria. Rhizobacteria are strongly top-down regulated by microfaunal grazers,
particularly protozoa. Consequently, beneficial effects of protozoa on plant growth
have been assigned to nutrients released from consumed bacterial biomass, that is, the
‘microbial loop'. In recent years however, the recognition of bacterial communication
networks, the common exchange of microbial signals with roots and the fact that
these signals are used to enhance the efflux of carbon from roots have revolutionized
our view of rhizosphere processes. Most importantly, effects of rhizobacteria on root
architecture seem to be driven in large by protozoan grazers. Protozoan effects on plant
root systems stand in sharp contrast to effects of mycorrhizal fungi. Because the regu-
lation of root architecture is a key determinant of nutrient- and water-use efficiency in
plants, protozoa provide a model system that may considerably advance our under-
standing of the mechanisms underlying plant growth and community composition.
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I. The Rhizosphere - Interface of Microbial and
Faunal Interactions

A century ago Hiltner (1904) introduced the term ‘rhizo-
sphere’ to describe the stimulation of biomass and activity of
microorganism in soil around plant roots. However, even
today it is often not fully acknowledged that all nutrients
a plant absorbs from soil pass through a region of intense
microbial and faunal activity.

The stimulation of microbial activity in the rhizosphere
results from the fact that plants secrete an array of low- and
high-molecular weight molecules into the soil as exudates,
which may account for up to 40% of the dry matter produced
by plants (Lynch & Whipps, 1990). As free-living soil micro-
organisms are strongly carbon limited (Wardle, 1992), a
specialised microflora, typically consisting of fast growing
bacteria, is triggered into activity by the carbon pulses
provided as exudates (Semenov ez al, 1999). Root-derived
carbon leads to strongly increased levels of microbial biomass
and activity around roots (Alphei ¢t al, 1996) and channels
energy to subsequent microfaunal grazers, where numbers
of bacterial feeding protozoa and free-living nematodes
may increase up to 30-fold compared with bulk soil (Griffiths,
1990; Zwart et al., 1994).

Estimates of plant-below-ground investments vary widely,
but even if the C-transfer to exudation was 10—20% of total
net fixed carbon (Rovira, 1991), other microbial symbionts
such as mycorrhizae (Séderstrém, 1992; Smith & Read,
1997) or N,-fixing microorganisms (Ryle ez al, 1979) may
each consume another 10—20% of total net fixed carbon.
Although a trade-off between plant C-investment in different
microbial interactions has been observed (Bonkowski ez 4/,
2001b; Renn et al., 2002; Wamberg ez al., 2003a,b), plants
may still release up to half of their total fixed carbon to fuel
microbial interactions in the rhizosphere.

It becomes immediately clear that supporting microbial
interactions in the rhizosphere must be of fundamental
importance for plants to justify this significant trade-off in
carbon allocation, which could otherwise be used to construct
light-capturing or defensive structural tissues above-ground.
In particular, why are plants providing ample energy in form
of exudates to a microbial community that is strongly com-
peting with roots for available nutrients? The answer partly
lies in the loop structure of the bacterial energy channel in the
rhizosphere. Nutrients become only temporarily locked up in
bacterial biomass near the root surface and are successively
liberated by microfaunal grazing (Bonkowski ez al., 2000a).
The interplay between microorganisms and microbivores
determines the rates of nutrient cycling and strongly enhances
the availability of mineral nutrients to plants (Clarholm, 1984;
Ingham et al., 1985; Gerhardson & Clarholm, 1986; Ritz &
Grifhths, 1987; Kuikman ez 4., 1990; Jentschke et al., 1995;
Alphei et al., 1996; Bonkowski et al., 2000b). The assumed
mechanism, known as the ‘microbial loop in soil’ (Clarholm,
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1985), is triggered by the release of root exudates from plants
that increase bacterial growth in the rhizosphere. Plant avail-
able nutrients will be strongly sequestered during microbial
growth (Kaye & Hart, 1997; Wang & Bakken, 1997) and
would remain locked up in bacterial biomass if consumption
by protozoa and nematodes would not constantly re-mobilize
essential nutrients for plant uptake (Christensen ez al., 1992;
Griffiths & Caul, 1993; Griffiths ez 2/, 1993; Bonkowski
et al., 2000b). Due to the relatively small differences in respect
to C: N ratios between predators and bacterial prey and a
relatively low assimilation efficiency, only 10—-40% and 50—
70% of the prey carbon will be used for biomass production
by protozoa and nematodes, respectively (Griffiths, 1994;
Ferris et al., 1997). The excess N is excreted as ammonia and
hence is readily available for other soil organisms, including
plant roots (Zwart et al., 1994).

In addition, the populations of soil protozoa strongly
fluctuate through time (Clarholm, 1989; Christensen ez al.,
1992; Janssen & Heijmans, 1998) and parallel to the decline
in protozoan numbers their rapidly decomposable tissue may
enter the detrital food-web. Although the size of most protozoa
in soil may range only between 10 and 100 um in diameter,
protozoan biomass is anything but small. In most soils pro-
tozoan biomass equals or exceeds that of all other soil animal
groups taken together — with the exclusion of earthworms
(Sohlenius, 1980; Foissner, 1987; Schaefer & Schauermann,
1990; Schréter ez al., 2003). Roughly estimated, 70 and 15%
of total respiration of soil animals might be attributed to pro-
tozoa and nematodes, respectively (Sohlenius, 1980; Foissner,
1987). High production rates of protozoa with 10-12 times
their standing crop per year and minimum generation times
of 2—4 h (Coleman, 1994) suggest a strong grazing pressure
on bacterial biomass and subsequent significant effects on
nutrient mineralization.

Il. Microfauna and Plant Growth

Beneficial effects of protozoa on plant growth are well docu-
mented (Ekelund & Renn, 1994; Griffiths, 1994; Zwart
et al., 1994). Experiments in planted microcosms provided
strong evidence of the importance of protozoan grazing in the
rhizosphere. Shoot biomass and amounts of shoot N mostly
increased in the presence of protozoa and nematode grazers
(Table 1). Microfaunal stimulation of nitrogen mineralization
via the microbial loop was suggested as the main underlying
mechanism (Clarholm, 1985; Griffiths, 1994; Zwart ez al.,
1994).

Consequently, food-web models simulating N-mineralization
in soil suggest protozoa and bacterivorous nematodes to be
the most important contributors to nitrogen mineralization
(Hunt ez al., 1987; De Ruiter et al, 1993; Schroter et al,
2003). Their indirect contributions to nutrient cycling may
be even more important than their direct effects because
grazing stimulates microbial mineralization processes. For
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Table 1 Effects of protozoa and nematodes on plant biomass production, and total plant and shoot nitrogen contents

Effect of protozoa (% of control)

Total plant biomass Total plant nitrogen

Shoot nitrogen

(min-max) (min-max) (min-max)

80 20 12 Clarholm (1984)

30-78 20-45 14-48 Clarholm (1985a)

27-85 37-166 38-157 Bonkowski et al. (2000b)
41-47 9-17 19-30 Kuikman et al. (1990)

44-57 46-63 40-45 Jentschke et al. (1995)

43 56 58 Bonkowski et al. (2001a)
10-25 -16——1 -14-6 Alphei et al. (1996)

-5-46 -11-11 -22-13 Bonkowski et al. (2001b)
2-21 7-24 6-38 Kuikman et al. (1991)*

11 -16 =21 Kuikman et al. (1991)**
-22-6 nd 18-138 Elliott et al. (1979)

-8--2 2-21 3-22 Kuikman & van Veen (1989)
Effect of nematodes (% of control) 49 Ingham et al. (1985) (day 49)
58 nd 49 Ingham et al. (1985) (day 49)
12 nd 6 Ingham et al. (1985) (day 77)
-5 nd -4 Ingham et al. (1985) (day 105)
15-30 10-16 11-14 Bonkowski et al. (2000b)

10 -5 -1 Alphei et al. (1996)

nd, not determined. *soil with 14-19% (v/w) moisture. **soil with 8% (v/w) moisture.

example, De Ruiter ¢f a/. (1993) calculated that the contribution
of amoebae and nematodes to overall N mineralization in
winter wheat was 18 and 5%, but their subsequent deletion
from the food-web model resulted in reductions of 28
and 12% of N mineralization for amoebae and nematodes,
respectively.

Although nutrient-based models appear fully sufficient to
estimate the gross outcome of plant—microfauna interactions,
it must be noted that the underlying mechanisms are much
more complex than could have been imagined nearly 20 yr
ago when the microbial loop concept was first proposed.

Roots do not only secrete carbon; the rhizodeposition
of nitrogen by plants can be substantial (Hogh-Jensen &
Schjoerring, 2001). By including the amount of nitrogen lost
through rhizodeposition and modeling N transformations in
the rhizosphere, Robinson ezal. (1989) and Griffiths and
Robinson (1992) calculated that plant-derived carbon is only
sufficient to allow for recycling of the N lost from the plant by
exudation rather than to support mineralization of N from
soil organic matter. Therefore only a small benefit of direct
microfaunal activity to the gross N nutrition of plants can be
assumed (Griffiths ez 2/, 2004).

Indeed, protozoa have been found to increase plant biomass
independently of nutrient contents in plant tissue (Kuikman
et al., 1991; Alphei ez al., 1996). In a laboratory experiment,
even a constant surplus of nutrients did not prevent an
increase of up to 60% in biomass of spruce seedlings in the
presence of protozoa, but completely eliminated beneficial
effects of mycorrhiza (Jentschke ez al, 1995).

© New Phytologist (2004) 162: 617-631  www.newphytologist.org

These discrepancies in the microbial loop model suggest
additional, nutrient-independent effects of protozoa on plant
growth.

lll. Victims and Benefactors: How Grazers Affect
Bacterial Community Composition

As noted in section I, bacteria in the rhizosphere are strongly
top-down regulated by grazing (Wardle & Yeates, 1993;
Bonkowski ¢t @/, 2000b) and there is increasing evidence that
changes in the composition of rhizobacteria due to strong and
selective grazing are a major determinant of microfaunal
effects on plant growth (Fig. 1).

The most important bacterial grazers in soil are naked
amoebae due to their high biomass and turnover and specialised
feeding modes (Fig. 2). By contrast to suspension and filter
feeders like bacterivorous nematodes and other protozoa,
amoebae are grazing bacterial biofilms and colonies attached
to soil and root surfaces and thus have access to the majority
of bacteria in soil. With the aid of their pseudopodia, amoebae
can reach bacterial colonies in soil pores and even inside roots
inaccessible to other predators (Darbyshire & Greaves, 1973;
Elliott ez al., 1980) and they may still continue grazing in tiny
water films when other protozoa or nematodes are restricted
by decreased water potential in soil (Foster & Dormaar, 1991;
Ekelund & Renn, 1994; Young & Ritz, 2000). ‘Bacterial
feeding nematodes, by contrast, are able to migrate to places
of high bacterial and protozoan activity (Griffiths & Caul,
1993) where they aggregate and become important grazers of
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Fig. 1 Protozoan effects on root architecture and composition of bacterial communities in the rhizosphere of rice (Oryza sativa). (a,b) Differences
in root architecture of 16-d-old rice seedlings growing in Petri dishes on agar inoculated with a diverse soil bacterial community in absence
(left) and presence (right) of amoebae (Acanthamoeba sp.). The length of the white bar is 1 cm (K. Kreuzer & M. Bonkowski, unpublished).
(b,c) An example for grazing-induced shifts in bacterial communities. Fluorecscent in situ hybridization of bacteria (red: alpha-proteobacteria,
blue: eubacteria) on the agar surface near lateral roots of the plants above in absence (left) and presence (right) of amoebae. White arrows
indicate red-fluorescent amoebal cysts. Please note the decrease of colonies of alpha-proteobacteria in presence of amoebae. (J. Adamczyk,
M. Bonkowski, M. Wagner, unpublished.)

both bacteria and amoebae (Anderson ez al, 1978; Elliott
et al., 1980; Woods ez al., 1982; Alphei ez al., 1996; Renn
et al., 1996; Bonkowski et al., 2000b) and eventually become
the dominant predators (Elliott e 4/, 1980; Griffichs, 1990).

Significant changes in bacterial diversity due to protozoan
grazing have been confirmed in freshwater systems (Pernthaler
et al., 1997; Jiirgens et al., 1999; Posch ez al., 1999) as well as
in the rhizosphere of plants (Griffiths ez 4/, 1999; Bonkowski

& Brandt, 2002; Renn eral, 2002). The grazing-induced
changes in microbial functioning affect fundamental ecosystem
properties because bacteria in soil occupy some of the most
important control points for nutrient cycling and plant
growth. For instance, Nz-ﬁxing, nitrifying and denitrifying
bacteria are in command of the nitrogen cycle (Mengel, 1996).
Protozoan grazing does often stimulate nitrifying bacteria,
presumably through predation on their faster-growing bacterial

www.newphytologist.org  © New Phytologist (2004) 162: 617-631
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Fig. 2 Typical distribution of amoebae (Acanthamoeba castellanii) along a lateral root of rice (Oryza sativa) growing on agar.

competitors, resulting in high concentrations of NO;™ in
culture liquid and leachate of rhizosphere soil (Griffiths, 1989;
Verhagen et al., 1994; Alphei ez al., 1996; Bonkowski ez al.,
2000b).

By contrast to interactions in freshwater systems, the three-
dimensional structure of the soil habitat adds to the com-
plexity of trophic interactions in the rhizosphere. Bacteria
in biofilms on roots and on the outer zones of soil particles
may receive greater grazing pressure than bacteria protected
inside tiny crevices or separated by water films (Young & Ritz,
1998). In addition, temporal dynamics of bacterial activity
on roots have to be considered (Semenov ez al, 1999). The
heterogeneity of the rhizosphere in space and time needs
considerably more attention in order to understand the
contribution of predator—prey interactions to the dynamics of
rhizosphere processes (Young & Ritz, 2000).

Bacterial communities often respond with morphological
shifts to grazing which are directed either towards larger or
smaller cell sizes. Protozoan grazing on bacteria commonly
results in an outgrowth of filamentous bacterial cells and micro-
colonies that the protozoa apparently cannot effectively ingest

© New Phytologist (2004) 162: 617-631 www.newphytologist.org

(Bianchi, 1989; Hahn ez al, 1999; Jiirgens & Matz, 2002).
Positive feedbacks may arise through the removal of senescent
bacteria and an increase in the contribution of younger strains
with higher metabolic activity. Subsequent bottom-up effects
occur through enhanced substrate availability, favoring
those species capable of balancing their predation losses with
enhanced growth rates (Posch ez 4/, 1999). However, the bigger
cells of these actively growing bacterial populations seem
most attractive to grazers and again receive the largest grazing
pressure (Sherr ez al., 1992). For example, grazing of protozoa
in the rhizosphere of wood barley (Hordelymus europaeus)
resulted in a 20—40% increased respiratory quotient, qO,
(i.e. microbial respiration per unit microbial biomass), con-
firming a strongly enhanced turnover of the grazed bacterial
community (Alphei et al, 1996) and evolution of '*CO,
from microbial mineralization of labeled plant litter material
increased up to 100% in the rhizosphere of ryegrass due to
protozoan grazing (Bonkowski ez a/., 2000b).

However, not only bacterial size and turnover matters. The
fact that certain microfaunal grazers grow better on some
bacterial species than on others is well established for protozoa
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(Weekers et al., 1993) and nematodes (Anderson & Coleman,
1981; Grewel, 1991). There is strong evidence that nematodes
and protozoa use chemical clues to sense and discriminate
between their bacterial prey species (Andrew & Nicholas,
1976; Snyder, 1991; Verity, 1991). In the case of protozoa a
high selectivity in bacterial food choice has been confirmed
(Boenigk & Arndt, 2002) and not only the feeding strategies
and grazing rates may considerably differ between taxa and
species, but also the sensitivity of the bacterial prey to grazing
may strongly diverge and depend on the protozoan predator.
For example, the same bacterial prey species may be digested
differently by various protozoan grazers, and the same predator
species may selectively digest variable prey (Weisse, 2002).
In addition, some common pigmented soil bacteria, like
Chromobacter, evolved secondary compounds with extreme
toxicity to protozoa (Deines ez al., 2004).

Studies in experimental soil systems indicate that gram-
positive bacteria benefit while gram-negative bacteria decrease
by grazing (Griffiths ez al, 1999; Ronn ez al., 2002b). However,
Ronn ez al. (2002b) demonstrated that not all gram-negative
bacteria were reduced, for example Pseudomonas, a typical
thizosphere colonizer, increased during grazing. Moreover,
their study demonstrated that the grazing-induced changes in
bacterial diversity were partly dependent on the taxa and
species of protozoan grazers present. Thus, grazing of protozoa,
and possibly nematodes, creates a complex top-down pressure
affecting the morphological, taxonomic and functional
composition of the bacterial community.

Molecular techniques, such as fluorescent 7 situ hybridi-
zation, microautoradiography (Lee ez al, 1999; Wagner ¢t al.,
2003), stable isotope probing and metagenomics (Wellington
et al., 2003) now offer ways to directly visualize changes in the
identity, activity, function and spatial arrangements of bacterial
communities exposed to protozoan predation. They may
considerably advance our understanding of the role of micro-
faunal predators in affecting the function and spatial organi-
zation of bacterial communities in the rhizosphere of plants.

IV. Nonmotile plants with flexible strategies

Plants are not passive recipients of nutrients, instead plants
integrate information from the environment into their deci-
sions on below-ground investments such as root production
and proliferation (Huber-Sannwald ez 2/, 1997; Hodge
et al., 1998; Rajaniemi ez al., 2003), formation of symbiotic
relationships with infecting microorganisms (e.g. mycorrhizal
fungi, Fitter & Merryweather, 1992; Smith & Read, 1997; or
N,-fixing bacteria, Ryle ez 4, 1979), alteration in exudation
rates (Kraffczyk et al., 1984; Jones & Darrah, 1995; Bonkowski
et al., 2001b; Wamberg e al, 2003a,b), interactions with
free-living bacteria (Mathesius ¢t a/., 2003; Joseph & Phillips,
2003) or production of secondary compounds to defend
herbivores (Baldwin & Hamilton, 2000; Cipollini ez 2/, 2003).
Because root morphology is both genetically programmed
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and environmentally determined (Rolfe ez al, 1997), there
must be signal transduction pathways that interpret complex
environmental conditions and activate genes to enter a par-
ticular symbiosis or to form a lateral root at a particular time
and place. Microbial symbionts must communicate their
presence to plant hosts (Alfano & Collmer, 1996; Long, 1996;
Hirsch et al., 1997, 2003; Barker ez al., 1998) and plants
need to distinguish friend (symbiont) and foe (pathogen),
suggesting that the reciprocal exchange of microbial signals
with roots is common (Paiva, 2000; Mathesius ez 2/, 2003).
Recently, Phillips ez al. (2003) combined these insights in the
concept of ‘rhizosphere control points” in order to emphasize
the importance of information exchange between plants and
microorganisms for gene expression patterns and resulting
morphological and physiological changes in the partners.

From a microbial perspective the evolution of strategies
enhancing energy transfer to the roots led to an increase in
fitness of those microorganisms that influence gene regulation
in plants by sending the respective signals. Indeed most of the
specialised rhizosphere bacteria appear to have the potential to
affect plant performance by producing hormones (Costacurta
& Vanderleyden, 1995; Arshad & Frankenberger, 1998;
Lambrecht et 4., 2000). Up to 80% of the bacteria isolated
from plant rhizospheres are considered to produce auxins
(Patten & Glick, 1996), and their widespread ability to pro-
duce cytokinins led Holland (1997) to suggest that cytokinins
in plants may originate exclusively from microorganisms. The
widespread ability of both beneficial and deleterious rhizo-
sphere organisms to produce plant hormones and other
signal molecules (Phillips e al, 1999; Joseph & Phillips, 2003;
Mathesius ez al., 2003) suggest that rhizosphere bacteria play
an important role in manipulating root and plant growth
(Shishido ez al,, 1996; Rolfe et al., 1997).

Recent advances in the application of microbial biosensors
are expected to significantly advance our understanding of
the spatial context of substrate availability and signal exchange
at scales relevant to roots and microorganisms (Jaeger ez al.,
1999; Steidle et al., 2001; Leveau & Lindow, 2002).

V. Case Study: Root Foraging and
Microfaunal Activity

In order to separate root foraging activity (Robinson, 1994),
that is, the occupation and exploitation of organic matter
by active root growth, from microfauna mediated effects
on nutrient mineralization, Bonkowski ez a/. (2000b) set up a
factorial experiment with ryegrass (Lolium perenne) and treat-
ments of bacterivorous protozoa and nematodes where
labelled plant litter was added to a soil poor in organic carbon
in order to create hotspots of microbial activity.

The biomass of L. perennedoubled in protozoan treatments,
and plant N-uptake and incorporation of >N from the labeled
plant litter increased two- and threefold, respectively. Root
foraging and presence of microfauna accounted for 34 and
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Fig. 3 Time course of organic matter decomposition (release of
13CO,~C from labelled plant litter) in soil inoculated with a diverse
soil microbial filtrate (Ctrl); and additional inoculations of
bacterial-feeding nematodes (Nem); protozoa (Prot); or nematodes
and protozoa (PxN). Data from Bonkowski et a/. (2000b).

47% of variation in plant biomass, indicating that microbial—
faunal interactions were a major determinant of plant growth.
The simultaneous action of root foraging and microfaunal
activity led to a complex pattern of nutrient liberation in space
and time. While root foraging in organic hotspots enhanced
the spatial coupling of mineralization and plant uptake, micro-
faunal grazing increased the temporal coupling of nutrient
release and plant uptake. This outcome resulted from the
simultaneous interplay of three effects: First protozoan
grazing strongly stimulated microbial mineralization dynamics
(Fig. 3) both, by keeping the microbial community in an
actively growing state and by changing the composition of the
bacterial community (Griffiths ez al, 1999). Second due to
strong effects on microbial functioning (increased N mineral-
ization) and diversity (stimulation of nitrifying bacteria), 90%
of the liberated nitrogen in the rhizosphere occurred as NO,~
and only 10% as NH /*. Nitrate is highly mobile in soil and plant
nitrogen uptake in the presence of protozoa may even decrease
due to leaching losses (e.g. Alphei ez al., 1996) if mobilization
of NO;™ is not matched by a corresponding increase in root
uptake rates. Third as a consequence of the second point, the
production of significantly more roots in the presence of
protozoa enabled plants to benefit from the liberated nitrogen-
pool, while constant grazing pressure shifted the competition
for nutrients in favour of roots (Bonkowski ez /., 2000b).
Thus grazing on bacteria creates more complex patterns rather
than simply liberating nutrients from grazed bacterial biomass.
Particularly, the development of a greater root surface in the
presence of protozoa, which enabled efficient nutrient uptake,
is a common pattern observed that merits special attention.

VI. Friend or Foe? Microbial Signals and the
Manipulation of Root Architecture

Many plant symbionts and pathogens use signals to direct
plant carbon for the build-up of additional root structures.

© New Phytologist (2004) 162: 617-631  www.newphytologist.org
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Root nodules inhabited by nitrogen-fixing bacteria (Hirsch
et al., 1997; Mathesius ez al., 2000), nematode-induced root
galls (McKenzie Bird & Koltai, 2000), or tumors formed by
Agrobacterium (Jameson, 2000) are well known examples.
There is now increasing evidence that the effects of rhizo-
bacteria on root architecture are controlled to a great extent by
protozoan grazing (Bonkowski & Brandt, 2002; K. Kreuzer
& M. Bonkowski, unpublished).

Plants develop an extensive and highly branched root
system in the presence of protozoa due to a strong stimulation
in lateral root production (Jentschke ez 4/, 1995; Bonkowski
et al., 2000b, 2001b; Bonkowski & Brandt, 2002; K. Kreuzer
& M. Bonkowski, unpublished). These changes in root
architecture correspond to hormonal effects on root growth
by beneficial rhizobacteria rather than nutrient effects (Boot
& Mensink, 1990; Petersen ez al., 1996; Shishido e al., 1996;
Rolfe et al., 1997; Lambrecht et al., 2000).

Early investigations suggested a direct release of plant
hormones by amoebae (Nikolyuk & Tapilskaja, 1969). Soil
amoebae grown axenically with the bacterium Azotobacter
released phytohormones into the growth medium. Produc-
tion of indolyl-3-acetic acid (IAA) related substances, the
most physiological active auxins, was at a maximum in 75-d-
old amoebal cultures and the biomass of pea seedlings grown
in this culture fluid increased by 48%. By contrast, culture
fluid of Azotobacter increased biomass of pea seedlings only by
3—4% (Tapilskaja, 1967).

Similarly, Bonkowski & Brandt (2002) demonstrated
strong growth-stimulating effects of protozoa on the root
system of water cress seedlings (Lepidium sativum). Already 5 d
after germination the number and length of first order lateral
roots were increased by factors of 4 and 5, respectively, in the
presence of protozoa. A direct production of auxins by amoebae
could be excluded, instead Bonkowski & Brandt (2002)
demonstrated a stimulation of auxin producing bacteria that
most likely was responsible for the stimulation of lateral root
growth. Accordingly, the increased root surface allows more
nutrients to be absorbed, but will also increase exudation rates,
thereby further stimulating bacterial-protozoan interactions,
as shown in Fig. 4. Thus, in addition to the stimulation of
gross nutrient flows protozoa promote a mutualistic inter-
action between plant roots and rhizobacteria.

These results were supported in an experiment investigat-
ing protozoan effects on Arabidopsis thaliana plants trans-
formed by the cytokinin-inducible ARRS5-promoter-GUS
construct (C. Dickler & K. Kreuzer, unpublished). As expected,
root elongation and root branching nearly doubled in plants
grown in the presence of amoebae (Acanthamoeba castellanii)
compared with control plants grown in soil inoculated
with a filtered soil bacterial inoculum. Simultaneously, GUS-
reporter gene activity strongly increased in treatments with
protozoa. The significant change in root architecture of
Arabidopsis suggests a strong auxin effect, which presumably
had to be down-regulated in the root by the auxin-antagonist
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cytokinin. Cytokinin is also important as a long-distance
root-to-shoot signal communicating nitrogen availability in
the rhizosphere to the shoot (Schmiilling, 2002). In addition
to auxins, locally high concentrations of nitrate will occur in
the rhizosphere due to the stimulation of nitrifying bacteria by
protozoa. Nitrate, besides being a source of nitrogen, acts as a
signal for lateral root elongation (Zhang & Forde, 2000) and
may aid to direct lateral root growth towards patches with
high nutrient concentration (Zhang & Forde, 1998).
Recently, the role of other signal molecules, apart from
hormones, in microbe-root communication has been estab-
lished. Phillips ez /. (1999) demonstrated that Sinorhizobium
meliloti manipulates plant carbon transfer to its own benefit.
The bacteria produce a signal molecule that enhances root
respiration and triggers a compensatory increase in whole-plant
net carbon assimilation in Medicago sativa. They identified
the signal as lumichrome, a common breakdown product of
riboflavin (Phillips ez @/, 1999). In addition, a large proportion
of the bacteria colonizing the roots of plants are capable of
producing species-specific autoinducing signals to coordinate
their behaviour in local rhizosphere populations, a process
that has become known as quorum sensing (Dunn &
Handelsman, 2002; Sturme et al., 2002). Specific interactions
of bacteria with plant hosts, such as nodulation (Wisniewski-
Dyé & Downie, 2002) and the infection of plants by dele-
terious bacteria presumably depends on quorum-sensing
regulation mediated by N-acyl homoserine lactone (AHL).
Recently, Mathesius ez a/. (2003) demonstrated that auxin
responses and investment in defence by the legume Medicago
truncatula were directly affected by AHLs from both free-
living beneficial and deleterious bacteria. Additionally,
Joseph & Phillips (2003) showed that homoserine lactone,
the breakdown product of AHL, leads to a strongly increased
transpiration in bean (Phaseolus vulgaris) and speculated
that the microorganisms benefit from enhanced transpiration
because soil water carries mineral nutrients towards the root.

signal molecules
(NO3/IAA)

o &
.:";
nitrifiers/IAA+

A bacteria

;ll.-h
N /
3 protoz't':;
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Fig. 4 A conceptual model illustrating
microfaunal-induced hormonal effects on
root growth, modified after Bonkowski &
Brandt (2002). Root exudation (1) stimulates
growth of a diverse bacterial community (2)
and subsequently of bacterial-feeders such as
protozoa (3). Ammonia is excreted by
protozoa and selective grazing favours
nitrifiers and indole-3-acetic acid (IAA+)
producing bacteria (4). The release of signal
molecules (5), such as NO; and IAA, induces
lateral root growth (6), leading to release

of more exudates (7), subsequent bacterial
growth (8), etc.

5

These examples give evidence of a bustling signal exchange in
the rhizosphere. Several of these indirect plant—microorganism
interactions could potentially be significantly influenced by
bacterial grazers (Griffiths ez al., 2004).

VII. Carbon is the Currency: Microfauna
Interactions with Mycorrhiza

The widespread symbiosis between plants and mycorrhizal
fungi is regarded as mutualistic (Smith & Read, 1997). As the
fungus provides its host with essential nutrients in exchange
for plant carbon, both partners apparently spend resources
they can afford in exchange for growth limiting nutrients.
Nevertheless, theory suggests major conflicts of interest
(Denison ez al., 2003). From a plant perspective a tight control
over its carbon budget and different carbon-allocation strategies
should exist; contrary, from the microbial perspective, mech-
anisms to increase the net efflux of carbon from roots and
competition for plant C between different root colonizers are
also likely to occur (Ali ez al, 1981; Vierheilig ez al., 2000;
Phillips ez al., 2003).

In fact, not all plants benefit from arbuscular-mycorrhizal
(AM) or ecto-mycorrhizal (EM) fungal colonization (Fitter
& Merryweather, 1992; Jonsson et al., 2001; Helgason ez al.,
2002; Sanders, 2003). Depending on their plant host, AM
species can become highly parasitic (Klironomos, 2003); also
high mycorrhizal infection can be harmful to plants (Gange &
Ayres, 1999; Jonsson ez al., 2001). Moreover, competition
for plant carbon may explain mutually inhibitory effects
where mycorrhizal infection prevents further root colonization
by fungal and nematode pathogens (Ingham, 1988; Graham,
2001). These findings suggest that microbial root interactions
might better be seen as a microbial contest to gain maximum
carbon from plants.

Microfauna interactions with mycorrhiza provide a good
model system to study the interplay of plants with multiple
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Fig. 5 Effects of protozoa on root architecture of Picea abies
seedlings ((a) root length (b) specific root length (c) number of root
tips) in treatments without and with ecto-mycorrhiza (Lactarius
rufus). Black bars: control, Ctrl; grey bars: protozoa treatments with
protozoa from soil filtrate (P1); with protozoa from cultures (P2).
Different letters indicate significant differences, P < 0.05,
Tukey-test. Data from Jentschke et al. (1995).

microbial root associations. As outlined above, bacteria—
protozoa interactions benefit from increased root exuda-
tion and favour the development of an extensive and highly
branched root system. Hyphal extensions of mycorrhizal
root systems, by contrast, are commonly formed at the
expense of root structures (Jonsson ez al., 2001; Lerat ez al.,
2003). The response of plants to these conflicting demands
was investigated in two experiments where nonmycorrhizal
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and ecto-mycorrhizal Norway spruce seedlings (Picea abies)
were inoculated with a bacterial soil inoculum or bacterial
inoculum plus protozoa (Jentschke et al., 1995; Bonkowski
et al, 2001b).

In both experiments, the presence of protozoa caused the
development of a highly branched root system with longer
and thinner roots (Fig. 5), whereas mycorrhiza had opposite
effects on root architecture (Jentschke ez 4/, 1995; Bonkowski
et al., 2001b). Presumably the plants counterbalanced con-
tradicting effects on root growth by letting microorganisms
compete one against the other. The microbial effects on root
architecture were cancelled out in the combined treatment,
and the performance of both microbial partners was reduced
due to strong carbon limitation. The length of fungal hyphae
decreased by 18% in the presence of protozoa, while the
presence of mycorrhiza led to reduced numbers of bacteria
(—389%) and their respective protozoan grazers (—34%),
indicating a significant trade-off in plant carbon allocation
between bacterial and fungal rhizosphere colonizers (Fig. 6;
Bonkowski ez al., 2001b). The plants however, took further
advantage because both microbial systems differed in their
abilities to mobilize essential growth-limiting nutrients:
mycorrhiza strongly increased plant uptake of phosphorus,
and protozoa strongly increased the mineralization of nitrogen.
High leaching losses of nitrogen occurred in treatments with
protozoa, but not in treatments with protozoa plus mycorrhiza.
Presumably, synergistic microbial effects maximized uptake of
nitrogen (+17%) and phosphorus (+55%) in the combined
compared with control treatments without mycorrhiza and
protozoa where the additional hyphal network increased
the uptake of protozoa-mobilized nitrogen (Bonkowski ez 4/,
2001b).

Ronn et al. (2002a) and Wamberg ez al. (2003a,b) observed
similar trade-offs in carbon allocation between microbial
systems in the rhizosphere of pea plants (Pisum sativum)
where numbers of bacteria and protozoa dropped in presence
of different AM fungi. Promiscuity in respect to microbial
interactions seems more common among plants than gener-
ally acknowledged. It is an open question to what extend there
has been an evolutionary benefit for the plant of being able
to direct its carbohydrates towards the different consumers
in direct response to the needs of the plant (Griffiths ez 4,
2004).

VIIl. The Plant Bridging Above- and
Below-Ground Processes

The soil-root interface is the transition zone where below-
and above-ground systems interact via plants. Therefore plant
interactions above-ground are likely to influence processes
in the rhizosphere and vice versa. For example, the amount
of carbon translocated in the rhizosphere may significantly
increase if plants are subjected to above-ground herbivory,
and this may strongly influence the rhizosphere food-web
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structure (Mikola ez al., 2001; Bardgett & Wardle, 2003). On (a) a

the other hand, many interactions in the rhizosphere have 20 [EAphid biomass (ug) ab

the potential to affect food webs above-ground by changing B Number of juveniles/plant

nutrient uptake, litter quality or defence mechanisms against 151

herbivores (Gange ez al., 2002; Bonkowski & Scheu, 2003;

Wurst ez al., 2003). 10 bc

Bonkowski ez /. (2001a) investigated the effects of bacterial N ?

feeding protozoa and earthworms in the rhizosphere of barley 57 b b 20

on above-ground aphid performance. The biomass of barley

increased by ¢. 40% in the presence of protozoa. Concomitantly, 0- i ' i

aphid numbers and biomass more than doubled on plants Ctrl E P E+P

grown in presence of protozoa (Fig. 7). However, protozoa  (p) 25

also increased plant reproduction (biomass of ears, number of a

seeds and individual seed weight). Apparently, the plantsin g 27 ab

protozoan treatments tolerated higher levels of herbivory < 45 . b

and even increased their fitness. Effects of protozoa on plant 2

biomass and nutrient turnover considerably exceeded effects % 17

of earthworms on most parameters measured. This indicates E 0.5 1

that, despite grass litter being added as an organic nutrient 2

source to the experimental soil, indirect effects of bacteria- 2 07

grazing protozoa were more important for plant growth and o 0.5 - b b

aphid performance than direct nutrient mobilization through a a

physicochemical processes by earthworms. However, more 1 Ct

. . . : rl E P E+P

investigations on the interactions between below- and above-

ground systems are required. The presence of microfauna B Root [ Shoot [] Head

may often result in a dilution of nutrients in plant tissues,
indicated by greater increases of plant biomass production
than nitrogen uptake as seen in Table 1. This may even
lead to strong negative effects on plant herbivores, as recently
confirmed by M. Bonkowski, M. Omacini and H. Jones
(unpublished) in a study on aphid herbivore development on
the grass Lolium multiflorum.

Fig. 7 Effects of protozoa and earthworms (a) on the biomass of
aphids (pg), and numbers of juvenile offspring on barley plants
and (b) on biomass of barley plants; animal-free control (Ctrl),
earthworms (E), protozoa (P), earthworms and protozoa (E + P).
Bars with the same letter are not significantly different (P < 0.05,
Tukey-Test). Data from Bonkowski et al. (2001a).
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IX. From Microscale to Macroscale: Interactions
at the Plant Community Level

In a field situation, plants are continuously confronted
to interact with their neighbours. A nutrient that escapes
the rhizosphere of one plant might be easily taken up by an
adjacent competitor. Under these circumstances, the costs and
gains of microbial rhizosphere interactions are of fundamental
importance, because even slight effects on plant competitive
abilities may result in opportunity costs for affected plants and
opportunity benefits for neighbouring unaffected plants (Heil
& Baldwin, 2002). Under the pressure of plant competition
this can result in significant effects at the plant community
level (van der Heijden et al, 1998; Bradford eral, 2002;
Klironomos, 2003; M. Bonkowski & J. Roy, unpubl.). In
view of the diversity of root systems it is clear that not all
plant species will interact with rhizosphere microorganisms
in a similar way. Plants with a highly branched root system,
as found in grasses and cereals, may respond more strongly to
protozoa—bacteria interactions than plants with a large root
cortex, as found in many forbs, which in turn may be stronger
hosts for mycorrhiza. Moreover, plants exert species specific
effects on the composition of root colonizing bacteria (Neal
et al., 1973; Chanway et al., 1991; Wieland ez 4/, 2001),
and their protozoan and nematode grazers (Geltzer, 1963;
Brimecombe et /., 2000). Modifications of the root environ-
ment by the rhizosphere microbial and microfaunal com-
munity need considerably more attention as driving agent for
plant competition and community composition.

X. Conclusions and Future Research

The view that interactions between plants and microfauna,
particularly protozoa, in the rhizosphere are solely based on
the liberation of nutrients from consumed microbial biomass
is rather simplistic. In recent years our perspective has pro-
foundly changed, giving soil organisms a much more active
role by interacting with, and being acted on, by living plants.

Complex microbial and faunal interactions with plant roots
accompanied and shaped the evolution of land plants. This
resulted in mutual interactions between plants, symbiotic micro-
organisms, soil animals and soil nutrients with the microfauna
affecting, and being affected by, both the above- and below-
ground components of the plant (Griffiths ez a/., 2004).

The recognition of bacterial communication networks in
the rhizosphere (Shapiro, 1998; Taga & Bassler, 2003), the
common exchange of bacterial (and other microbial and micro-
faunal) signals with roots (Paiva, 2000; Hirsch ez al, 2003;
Mathesius ez al., 2003) and the fact that these signals are used
to enhance the efflux of carbon from roots (Phillips ez al,
1999; Bonkowski & Brandt, 2002; Phillips ez /., 2003) have
led to the realization that rhizosphere interactions must be seen
from an evolutionary perspective where all actors basically
behave in a selfish manner. In addition to the microbial
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interactions outlined above, a great part of soil microbial
biomass is fungal and consists of a saprophytic-pathogenic
continuum of fungal species. Our understanding of rhizo-
sphere interactions will remain incomplete without consider-
ing their interactions with rhizosphere bacteria, protozoa and
plant roots within the heterogeneous pore network of the soil
matrix. Rhizosphere interactions are anything but co-operative
and unidirectional; rather conflicting interests and reciprocal
manipulations to increase own benefits seem commonplace.
Microbial rhizosphere processes can strongly affect the per-
formance of individual plants, but have the potential to shape
plant successional trajectories and community composition,
as well as herbivore-based food webs above-ground, and thus
can influence ecosystem processes at much larger scales.

Most importantly, the microfauna has to be acknowledged
asan integral driving part of rhizosphere interactions. The regu-
lation of root architecture is a key determinant of nutrient-
and water-use efficiency in plants. The finding that the
effects of rhizobacteria on root architecture seem to be driven
in large by protozoan grazing provides a model system with
the potential to considerably advance our understanding of
the mechanisms underlying plant growth regulation and ‘soil
fertility’. From an applied point of view, a better understanding
of the role of microfauna in regulating rhizosphere processes
may in many ways foster the efforts to improve crop health
and productivity; may it be to assess trade-offs due to genetic
manipulation of plant traits; the release of plant growth-
promoting microorganisms; efforts to reduce plant herbivore-
load or to restrain weedy competitors.

The examples given in this review highlight that soil, fauna,
flora, root, shoot, herbivores and predators in many ways act
like a single connected organism, with rhizosphere processes
being virtually the basis for understanding plant ecology.
Dissecting the driving mechanisms underlying these multi-
trophic interactions is a major challenge that has to be tackled
by combined research efforts of scientists working in rather
disparate fields — microbiology, (soil) animal ecology and plant
physiology — in this sense rhizosphere ecology has become one
of the most multifacetted and challenging frontiers in ecology.
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