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Abstract Plant growth-promoting rhizobacteria (PGPR)

are the rhizosphere bacteria that can enhance plant growth by a

wide variety of mechanisms like phosphate solubilization,

siderophore production, biological nitrogen fixation, rhizo-

sphere engineering, production of 1-Aminocyclopropane-1-

carboxylate deaminase (ACC), quorum sensing (QS) signal

interference and inhibition of biofilm formation, phytohor-

mone production, exhibiting antifungal activity, production of

volatile organic compounds (VOCs), induction of systemic

resistance, promoting beneficial plant-microbe symbioses,

interference with pathogen toxin production etc. The poten-

tiality of PGPR in agriculture is steadily increased as it offers

an attractive way to replace the use of chemical fertilizers,

pesticides and other supplements. Growth promoting sub-

stances are likely to be produced in large quantities by these

rhizosphere microorganisms that influence indirectly on the

overall morphology of the plants. Recent progress in our

understanding on the diversity of PGPR in the rhizosphere

along with their colonization ability and mechanism of action

should facilitate their application as a reliable component in

the management of sustainable agricultural system. The pro-

gress to date in using the rhizosphere bacteria in a variety of

applications related to agricultural improvement along with

their mechanism of action with special reference to plant

growth-promoting traits are summarized and discussed in this

review.
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Abbreviations

AHLs N-acyl homoserine lactones

ACC 1-Aminocyclopropane-1-carboxylate

AFM Anti-fungal metabolite

DAPG 2, 4-diacetylphloroglucinol

BYMV Bean yellow mosaic potyvirus

CSI Central insecticide board

ISR Induced systemic resistance

PO Peroxidise

PAL Phenylalanine ammonia-lyase

PGPR Plant growth-promoting rhizobacteria

PCBs Polychlorinated biphenyls

PPO Polyphenol oxidase

QS Quorum sensing

RFLP Restriction fragment length polymorphism

RZT Root zone temperature

VOCs Volatile organic compounds

YCF1 Yeast cadmium factor protein

Introduction

Although bacteria were not known to exist until the dis-

covery of microscopic animals by Anton von Leeuwenhoek

(1683), their utilization to stimulate plant growth has been

exploited since ancient times. Theophrastus (372–287 BC)

suggested the mixing of different soil samples for remedy-

ing defects and adding heart to soil (Tisdale and Nelson

1975). Virgil recorded the establishment of legumes on
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cultivated land and demonstrated the beneficial effects of

legume crops in increasing the fertility of soil (Chew 2002).

Hellriegel and Wilfarth (1888) investigated the rhizosphere

root colonization in grasses and legumes and suggested the

ability of soil bacteria to convert atmospheric N2 into plant

usable forms. Based on their experiments on radishes,

Kloepper and Schroth (1978) introduced the term ‘rhizo-

bacteria’ to the soil bacterial community that competitively

colonized plant roots and stimulated growth and thereby

reducing the incidence of plant diseases. Kloepper and

Schroth (1981) termed these beneficial rhizobacteria as

plant growth-promoting rhizobacteria (PGPR). PGPR can

be defined as the indispensable part of rhizosphere biota that

when grown in association with the host plants can stimulate

the growth of the host. PGPR seemed as successful rhizo-

bacteria in getting established in soil ecosystem due to their

high adaptability in a wide variety of environments, faster

growth rate and biochemical versatility to metabolize a wide

range of natural and xenobiotic compounds. Cook (2002)

considered PGPR as the significant component in the man-

agement of agricultural practices with innate genetic

potential. The concept of PGPR has now been confined to

the bacterial strains that can fulfil at least two of the three

criteria such as aggressive colonization, plant growth stim-

ulation and biocontrol (Weller et al. 2002; Vessey 2003).

According to Whipps (2001) there are three basic categories

of interactions (neutral, negative or positive) generally

exists between the rhizobacteria and growing plants. Most

rhizobacteria associated with plants are commensals in

which the bacteria establish an innocuous interaction with

the host plants exhibiting no visible effect on the growth and

overall physiology of the host (Beattie 2006). In negative

interactions, the phytopathogenic rhizobacteria produces

phytotoxic substances such as hydrogen cyanide or ethyl-

ene, thus, negatively influence on the growth and physiology

of the plants. Counter to these deleterious bacteria, there are

some PGPRs that can exert a positive plant growth by direct

mechanisms such as solubilization of nutrients, nitrogen

fixation, production of growth regulators, etc., or by indirect

mechanisms such as stimulation of mycorrhizae develop-

ment, competitive exclusion of pathogens or removal of

phytotoxic substances (Bashan and de-Bashan 2010).

However, in accordance with their degree of association

with the plant root cells, PGPRs can be classified into

extracellular plant growth promoting rhizobacteria (ePGPR)

and intracellular plant growth promoting rhizobacteria

(iPGPR) (Martinez-Viveros et al. 2010). The ePGPRs

may exist in the rhizosphere, on the rhizoplane or in the

spaces between the cells of root cortex; on the other

hand, iPGPRs locates generally inside the specialized nod-

ular structures of root cells. The bacterial genera such as

Agrobacterium, Arthrobacter, Azotobacter, Azospirillum,

Bacillus, Burkholderia, Caulobacter, Chromobacterium,

Erwinia, Flavobacterium, Micrococcous, Pseudomonas and

Serratia belongs to ePGPR (Gray and Smith 2005). The

iPGPR includes the endophytes and Frankia species both of

which can symbiotically fix atmospheric N2 with the higher

plants (Verma et al. 2010). Endophyte includes a wide range

of soil bacterial genera such as Allorhizobium, Azorhizobi-

um, Bradyrhizobium, Mesorhizobium and Rhizobium of the

family Rhizobiaceae that generally invades the root systems

in crop plants to form nodules (Wang and Martinez-Romero

2000) and stimulates growth either directly or indirectly.

This group of rhizobacteria is mostly Gram-negative and

rod-shaped with a lower proportion being Gram-positive

rods, cocci and pleomorphic. Examples can also be cited

from Allorhizobium undicola (de Lajudie et al.

1998a), Azorhizobium caulinodans (Dreyfus et al. 1988),

Bradyrhizobium japonicum (Guerinot and Chelm 1984),

Mesorhisobium chacoense (Velazquez et al. 2001), Meso-

rhizobium pluriforium (de Lajudie et al. 1998b), Rhizobium

ciceri (Nour et al. 1994), Rhizobium etli (Segovia et al.

1993), Rhizobium fredii (Scholla and Elkan 1984), Rhizo-

bium galegae (Lindstrom 1989), Rhizobium gallicum

(Amarger et al. 1997), Rhizobium giardinii (Amarger et al.

1997), Sinorhizobium arboris (Nick et al. 1999), Sinorhi-

zobium fredii (Chen et al. 1988) and Sinorhizobium medicae

(Rome et al. 1996). Some of the important plant species

forming symbiotic association with these rhizobial species

includes Acacia sp., Arachis hypogaea, Cajanus cajan,

Cercis canadensis, Cicer arietinum, Glycine max, Lens cu-

linaris, Lotus corniculatus, Medicago sativa, Phaseolus

vulgaris, Pisum sativum and Trifolium sp. (Verma et al.

2010). In addition, several actinomycetes, one of the major

components of rhizosphere microbial populations are also

useful because of their significant ecological roles in soil

nutrient cycling (Halder et al. 1991; Elliot and Lynch 1995)

as well in plant growth-promoting activities (Merzaeva and

Shirokikh 2006). Numbers of reports (Gomes et al. 2000;

Sousa et al. 2008) are available on the potential of actino-

mycetes as plant growth-promoting agent. Actinomycetes

strains like Micromonospora sp., Streptomyces spp., Strep-

tosporangium sp., and Thermobifida sp., are recorded as best

to colonize the plant rhizosphere, showing an immense

potentiality as biocontrol agent against a range of root

pathogenic fungi (Franco-Correa et al. 2010). Rhizosphere

Streptomycetes as potential biocontrol agent of Fusarium

and Armillaria pine rot and as PGPR of Pinus taeda was

reported (de Vasconcellos and Cardoso 2009). Evidences

are now available on actinobacteria used in the control of

Rhizoctonia solani and Pseudomonas solanacearum in

tomato (Sabaratnam and Traquair 2002) and Colletotrichum

musae in banana (Taechowisan et al. 2003). Soil actino-

mycetes are also an important source of diverse antimicro-

bial metabolites (Terkina et al. 2006). de Vasconcellos et al.

(2010) isolated and screened antagonistic actinobacteria of

World J Microbiol Biotechnol

123



Araucaria angustifolia rhizosphere for the production of

active metabolites. The metabolites, especially, Indole-

acetic acid (IAA) and chitinase are recorded as responsible

for the degradation of different complex and relatively

recalcitrant organic compounds present in soil. Similar

antagonistic activity of endophytic Streptomyces griseoru-

biginosus against Fusarium oxysporum f. sp. cubense has

been recorded by Cao et al. (2004).

Potential role of PGPRs in conferring resistance to water

stress in tomatoes and peppers has been investigated

(Mayak et al. 2004). Fluorescent pseudomonads and spe-

cies of Bacillus were reported with very high efficiency in

host root colonization and production of growth metabo-

lites resulting in improved strategic crop yield (Khalid

et al. 2004). The various modes of action of a Bacillus

subtilis strain, FZB24 against phytopathogens are exam-

ined by Kilian et al. (2000) suggesting the role of the

bacterium in plant vitality (Fig. 1). According to Cakmakci

et al. (2006) soil rhizobacterial populations are capable of

exerting beneficial effects on many plants like wheat,

potato, maize, grasses, pea and cucumber by colonizing

rhizosphere. Applications of PGPR increased the nodula-

tion and nitrogen fixation of soya bean (Glycine max (L.)

Merr.) over a wide range of root zone temperatures (RZTs)

(Zhang et al. 1996). Thus, it has been established that the

inoculation of PGPRs can increase nodulation, nitrogen

uptake, growth and yield response of crop plants. In

addition to this, employing microorganisms as co-culture in

biotization is also another important area of research (Sekar

and Kandavel 2010) in recent decade. Biotization is a

metabolic response of in vitro grown plant material to

microbial inoculants leading to developmental and

physiological changes of the derived propagules, causing

enhancement in the biotic and abiotic stress resistance in

plants. Here, plantlets are usually co-cultured with PGPR

to produce more biomass and secondary metabolites. For

instances, Origanum vulgare L. plantlets when co-cultured

with Pseudomonas spp., produced more phenolics and

chlorophyll than non-bacterized control (Nowak 1998).

Besides, importance of PGPRs in maintaining root health,

nutrient uptake and tolerance to environmental stress are

also well recognized (Malhotra and Srivastava 2009)

although, specific traits of promoting plant growth and

development are limited at a given environment of plant–

microbe interactions. Several PGPR formulations are cur-

rently available as commercial products for agricultural

production of beneficial crops. Our understanding on PGPR

is now advancing at cellular, genomic and proteomic level.

Large numbers of PGPR strains of different bacterial

classes and genera with multifunctional traits have, there-

fore, been described for their potent application in boosting

plant activities in modern agriculture. However, it is

equally important to study in detail the potentiality of this

group of rhizospheric microbiota along with their mecha-

nism of action involved in sustainable crop production. We

also need to improve our knowledge for the selection of

potent microbial strains colonizing rhizosphere of growing

plants for specific restoration programmes. PGPR can

promote growth and yield of crop plants by direct and

indirect mechanisms. In some PGPR species, plant growth

promotion dominates with nitrogen fixation, phosphate

solubilization and production of phytohormones like auxin

and cytokinin and volatile growth stimulants such as eth-

ylene and 2, 3-butanediol (Ryu et al. 2003; Vessey 2003).

     Pathogen 

Antibiosis 

Competition Induced 
resistance Growth 

promotion 

Yield 
increase 

          Plant

Bacillus subtilis 

‘Disease escape’ 

Improved      
plant strength 

Fig. 1 Modes of action of

Bacillus subtilis strain, FZB24

promting plant growth (Adapted

from Kilian et al. 2000)
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Siderophore production for rhizosphere colonization has

also been recorded as one of the important mechanism by

certain PGPRs (Bradyrhizobium japonicum, Rhizobium

leguminosarum and Sinorhizobium meliloti) (Carson et al.

2000; El-Tarabily and Sivasithamparam 2006) with plant

growth promoting activity. Besides, iron-chelating sidero-

phores (Schippers et al. 1988), antibiotics (Weller 1988)

and hydrogen cyanides (Stutz et al. 1986) are also likely to

be produced by PGPR strains, participating tremendously

in the reduction of phytopathogens and deleterious rhizo-

bacteria with a corresponding improvement in plant health.

However, regardless of the mechanism of plant growth

promotion, PGPR must colonize the rhizosphere or root

itself (Glick 1995). The objective of this review will be to

examine our current understandings on the known, putative

and speculative mechanism of plant-growth promotion by

the rhizobacteria along with their potential emergence on

overall plant growth and development in agriculture.

The rhizosphere and plant–microbe interactions

Plant–microbe interactions may occur at phyllosphere,

endosphere and rhizosphere. Phyllosphere is related with the

aerial parts of the plants and endosphere with internal

transport system. Rhizosphere, the term, can be defined as

any volume of soil specially influenced by the plant roots or

in association with the roots and plant-produced material.

According to Bringhurst et al. (2001) rhizosphere includes

the region of soil bound by plant roots, often extending a few

mm from the root surface. This region of soil is much richer

in bacteria than the surrounding bulk soil (Hiltner 1904).

Studies based on molecular techniques have estimated more

than 4,000 microbial species per gram of soil (Montesinos

2003). Filamentous actinobacteria are also considered as

one of the important community in rhizosphere microbiota

(Benizri et al. 2001) being able to influence the plant

development as well to protect the plant roots against phy-

topathogens. Plant exudates such as amino acids and sugars

provide a rich source of energy and nutrients for the bacteria

in rhizosphere, resulting in more microbial populations in

the region than outside the region (Haas and Defago 2005).

Plant-root interactions in rhizosphere may include root–

root, root-insect and root-microbe interactions, resulting in

the production of more root exudates that ultimately favours

maximum microbial populations (rhizosphere engineering)

in this ecologically significant region. Changes in rhizo-

bacterial community structure have been reported with the

application of polymerase chain reaction (PCR) and dena-

turing gradient gel electrophoresis (DGGE) resulting in

significant alterations in plant–microbes interactions

(Herschkovitz et al. 2005). However, successful root colo-

nization and persistence of PGPRs in plant rhizosphere are

required in order to exert their beneficial effect on the plant

(Elliot and Lynch 1984). The intimacy between the plants

and the environment in rhizosphere is thus essential for

better acquisition of water and nutrients by plants as well

beneficial interactions of plants with soil-borne microor-

ganisms (Ryan et al. 2009). According to Cardoso and

Freitas (1992) the rhizosphere microbial communities are

vigorously associated with the biogeochemical cycling of

nutrients like C, P, N and S, removal of toxins and pro-

duction of phytohormones or antibiotics etc. Rhizobacteria

may depend on other microbes for nutrient sources as one

microbe may convert plant exudates into a form that can be

used by another microbe. Thus, rhizosphere has appeared

as a versatile and dynamic ecological environment of

intense plant-microbe interactions (Mayak et al. 2004)

harnessing essential micro and macro-nutrients affecting

plant growth, although, the process of root colonization is

under the influence of various parameters such as bacterial

traits, root exudates and several other biotic and abiotic

factors (Benizri et al. 2001). In many rhizospheric rela-

tionships, the PGPRs are known to colonize the plant root

(Andrews and Harris 2000) and stimulate plant growth.

The colonization of plant rhizosphere by Azospirillum sp.,

Bacillus subtilis sp., and Pseudomonas sp., has been well

studied (Steenhoudt and Vanderleyden 2000; Trivedi et al.

2005). Moreover, immobilized form of PGPR inoculants in

comparison to free forms has greater ability of survival and

plant root colonization. Recently, it has been reported that

soil microorganisms, including free-living as well as

associative and symbiotic rhizobacteria belonging to the

genera like Acinetobacter, Alcaligenes, Arthrobacter,

Azospirillum, Azotobacter, Bacillus, Burkholderia, Enter-

obacter, Erwinia, Flavobacterium, Proteus, Pseudomonas,

Rhizobium, Serratia, Xanthomonas in particular, are the

integral parts of rhizosphere biota (Glick 1995; Kaymak

2011) exhibiting successful rhizosphere colonization.

Lugtenberg et al. (2001) reported a large number of

cell surface molecules as responsible for the effective

rhizosphere colonization. Rhizospheric colonization is

thus, considered as a crucial step in the application of

microorganisms for beneficial purposes such as biofertil-

ization, phytostimulation, biocontrol and phytoremedia-

tion, although the colonization of rhizosphere by PGPRs is

not a uniform process. For example, Kluyvera ascorbata

colonized the upper two-thirds of the surface of canola

roots but no bacteria were detected around the root tips

(Ma et al. 2001).

Mechanism of action

The search for PGPRs and their mode of action are

increasing at a rapid rate in order to use the best PGPR

World J Microbiol Biotechnol

123



strain as commercial biofertilizer. Investigations into the

mechanisms of plant growth promotion by PGPR strains

indicated that the effective PGPRs increased plant growth

basically by changing the whole microbial community

structure in rhizosphere (Kloepper and Schroth 1981).

According to Glick et al. (1999) the general mechanisms of

plant growth promotion by PGPR includes associative

nitrogen fixation, lowering of ethylene levels, production

of siderophores and phytohormones, induction of pathogen

resistance, solubilization of nutrients, promotion of

mycorrhizal functioning, decreasing pollutant toxicity etc.

Castro et al. (2009) suggested that PGPR strains can pro-

mote plant growth and development either directly and

indirectly. Direct stimulation includes biological nitrogen

fixation, producing phytohormones like auxins, cytokinins

and gibberellins, solubilizing minerals like phosphorus and

iron, production of siderophores and enzymes and induc-

tion of systemic resistance, while indirect stimulation is

basically related to biocontrol, including antibiotic

production, chelation of available Fe in the rhizosphere,

synthesis of extracellular enzymes to hydrolyze the fungal

cell wall and competition for niches within the rhizosphere

(Zahir et al. 2004; van Loon 2007). PGPR strains, espe-

cially, Pseudomonas fluorescens and Bacillus subtilis are

best recorded as the most promising candidates of indirect

stimulation (Damayanti et al. 2007). Besides, nitrogen

transformation, increasing bioavailability of phosphate,

iron acquisition, exhibition of specific enzymatic activity

and plant protection from harmful pathogens with the

production of antibiotics can also successfully improve the

quality of crops in agriculture (Spaepen et al. 2007). Thus,

based on their mechanism of action, PGPRs can be cate-

gorized into three general forms such as biofertilizer,

phytostimulator and biopesticide (Table 1). The phenom-

enon of quorum regulation can affect the expression of

each of these traits as PGPRs are reported for their regular

interactions with the resident microbial community in

rhizosphere (Lugtenberg and Kamilova 2009). Recent

investigations on PGPR revealed that it can promote plant

growth mainly by following means; (1) producing ACC

deaminase to reduce the level of ethylene in the roots of

developing plants (Dey et al. 2004) (2) producing plant

growth regulators like indole acetic acid (IAA) (Mishra

et al. 2010), gibberellic acid (Narula et al. 2006), cytoki-

nins (Castro et al. 2008) and ethylene (Saleem et al. 2007)

(3) asymbiotic nitrogen fixation (Ardakani et al. 2010) (4)

exhibition of antagonistic activity against phytopathogenic

microorganisms by producing siderophores, b-1,3-glucan-

ase, chitinases, antibiotics, fluorescent pigment and cyanide

(Pathma et al. 2011) and (5) solubilization of mineral

phosphates and other nutrients (Hayat et al. 2010). PGPR

may use more than one of these mechanisms to enhance

plant growth as experimental evidence suggests that the

plant growth stimulation is the net result of multiple

mechanisms that may be activated simultaneously (Marti-

nez-Viveros et al. 2010). Recently, biochemical and

molecular approaches are providing new insight into the

genetic basis of these biosynthetic pathways, their regula-

tion and importance in biological control (Joshi and Bhatt

2011). However, to be more effective in the rhizosphere,

PGPR must maintain a critical population density for a

longer period, although inoculation of plants with PGPR

can temporarily enhance the population size.

Potential role of PGPR in agriculture

Production of plant growth regulators

PGPR can alter root architecture and promote plant

development with the production of different phytohor-

mones like IAA, gibberellic acid and cytokinins (Kloepper

et al. 2007). Several PGPRs as well as some pathogenic,

symbiotic and free living rhizobacterial species are

Table 1 Forms of PGPRs and their mechanism of action stimulating plant growth

PGPR forms Definition Mechanism of action References

Biofertilizer A substance that contains live microorganisms which,

when applied on the seed, plant surface or soil,

colonizes the rhizosphere and promote plant growth

through increased supply of primary nutrients

for the host plant

Biological nitrogen fixation Vessey (2003)

Utilization of insoluble

phosphorus

Somers et al. (2004)

Phytostimulator Microorganism, with the ability to produce phytohormones

such as indole acetic acid, gibberellic acid, cytokinins

and ethylene

Production of phytohormones Lugtenberg et al.

(2002), Somers et al.

(2004)

Biopesticide Microorganisms that promote plant growth by controlling

phytopathogenic agents

Production of antibiotics,

siderophores, HCN

Vessey (2003)

Production of hydrolytic enzymes Somers et al. (2004)

Acquired and Induced systemic

resistance

Chandler et al. (2008)
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reported to produce IAA and gibberllic acid in the rhizo-

spheric soil and thereby plays a significant role in

increasing the root surface area and number of root tips in

many plants (Han et al. 2005). Recent investigations on

auxin synthesizing rhizobacteria (Spaepen et al. 2007) as

phytohormone producer demonstrated that the rhizobacte-

ria can synthesize IAA from tryptophan by different

pathways, although the general mechanism of auxin syn-

thesis was basically concentrated on the tryptophan-inde-

pendent pathways. The phytopathogenic bacteria rather use

the indole acetamide pathway to synthesize IAA that has

been implicated earlier in the tumor induction in plants.

Swain et al. (2007) reported a positive effect of IAA pro-

ducing strains of Bacillus subtilis on Dioscorea rotundata

L. They applied a suspension of B. subtilis on the surface of

the plant, which resulted in an increase in the root: stem

ratio as well as number of sprouts as compared with the

non-inoculated plants. Potentiality of Azotobacter spp., to

produce high amount of IAA (7.3–32.8 mg/ml) in agri-

culture was reported by Ahmad et al. (2005). Similarly,

significant shoot growths in maize and rice dwarf mutants

were promoted by gibberellins-like substances excreted by

Azospirillum spp. (Boiero et al. 2007). Table 2 represents

some of the efficient PGPR strains as the producer of dif-

ferent plant growth regulators. IAA-mediated ethylene

production could increase root biomass, root hair number

and consequently the root surface area of PGPR inoculated

tomato plants (Ribaudo et al. 2006). Involvement of PGPR-

formulated cytokinins were also observed in root initiation,

cell division, cell enlargement and increase in root surface

area of crop plants through enhanced formation of lateral

and adventitious roots (Werner et al. 2003). Recently, it has

been established that the working pathways of these

phytostimulators leading to overall development in crop

plants are differently regulated by catabolite repression

(Zaied et al. 2009) as physiological regulator of biofilm

formation.

Phosphorous solubilization

Phosphorus is one of the most essential nutrient require-

ments in plants. Ironically, soils may have large reservoir

of total phosphorous (P) but the amounts available to plants

are usually a tiny proportion of this total. This low avail-

ability of phosphorous to plants is because of the vast

majority of soil P is found in insoluble forms, while the

plants can only absorb it in two soluble forms, the mono-

basic (H2PO4
-) and the diabasic (HPO4

2-) ions (Glass

1989). Several phosphate solubilizing microorganisms

(PSMs) are now recorded to convert the insoluble form of

phosphorus to soluble form through acidification, secretion

of organic acids or protons (Richardson et al. 2009) and

chelation and exchange reactions (Hameeda et al. 2008).

Saprophytic bacteria and fungi are reported for the chela-

tion-mediated mechanisms (Whitelaw 2000) to solubilise

phosphate in soil. Release of plant root exudates such as

organic ligands can also alter the concentration of P in soil

solution (Hinsinger 2001). According to Nahas (1996)

phosphate solubilization takes place through various

microbial processes including organic acid production and

proton extrusion. In certain cases, phosphate solubilization

is induced by phosphate starvation (Gyaneshwar et al.

1999). A general sketch of phosphorous solubilization in

soil is shown in Fig. 2. Bacterial genera like Azospirillum,

Azotobacter, Bacillus, Beijerinckia, Burkholderia, Entero-

bacter, Erwinia, Flavobacterium, Microbacterium, Pseu-

domonas, Rhizobium and Serratia are reported as the most

significant phosphate solubilizing bacteria (Sturz and No-

wak 2000; Sudhakar et al. 2000; Mehnaz and Lazarovits

2006). Rhizobacteria can solubilize inorganic P sources

and enhance growth and yield of crop plants. Besides,

examples of some widely reported P solubilising microbial

species intimately associated with a large number of agri-

cultural crops like potato, tomato, wheat, radish, pulses

etc., are Azotobacter chroococcum (Kumar and Narula

Table 2 Efficient PGPR strains

as phytohormone producer in

numbers of plants

Hormone produced PGPR Host References

IAA Aeromonas veronii Rice Mehnaz et al. (2001)

Agrobacterium sp. Lettuce Barazani and Friedman (1999)

Alcaligenes piechaudii Lettuce Barazani and Friedman (1999)

Azospirillum brasilense Wheat Kaushik et al. (2000)

Bradyrhizobium sp. Radish Antoun et al. (1998)

Comamonas acidovorans Lettuce Barazani and Friedman (1999)

Enterobacter cloacae Rice Mehnaz et al. (2001)

Rhizobium leguminosarum Radish Antoun et al. (1998)

Cytokinin Paenibacillus polymyxa Wheat Timmusk et al. (1999)

Pseudomonas fluorescens Soybean Garcia de Salamone et al. (2001)

Rhizobium leguminosarum Rape & lettuce Noel et al. (1996)

Gibberellin Bacillus sp. Alder Gutierrez-Manero et al. (2001)
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1999), Bacillus circulans and Cladosporium herbarum

(Singh and Kapoor 1999), Bradyrhizobium japonicum

(Antoun et al. 1998), Enterobacter agglomerans (Kim et al.

1998), Pseudomonas chlororaphis and P. putida (Cattelan

et al. 1999) and Rhizobium leguminosarum (Chabot et al.

1998). The ability of PGPRs to solubilize mineral phos-

phate, therefore, has been of immense interest to agricul-

tural microbiologists since it can enhance the availability of

phosphorus for effective plant growth. PGPRs have been

recorded to solubilize precipitated phosphates to plants,

representing a possible mechanism of plant growth pro-

motion under field conditions (Verma et al. 2001). Syn-

thesis of organic acids by rhizosphere microorganisms

could be the possible reason for solubilization of inorganic

P sources.

PGPR as biofertilizer

Biofertilizers are the substances, prepared from living

microorganisms which, when applied to the seeds or plant

surfaces adjacent to soil can colonize rhizosphere or the

interior parts of the plants and thereby promotes root

growth. The term, biofertilizer should not be used inter-

changeably with green manure, manure, intercrop or

organic-supplemented chemical fertilizer. Interestingly

some PGPR species have appeared to promote plant growth

by acting both as biofertilizer and biopesticide. For

instances, strains of Burkholderia cepacia have been

observed with biocontrol characteristics to Fusarium spp.,

while, can also stimulate growth of maize under iron-poor

conditions via siderophore production (Bevivino et al.

1998). Allorhizobium, Azorhizobium, Bradyrhizobium,

Mesorhizobium, Rhizobium and Sinorhizobium are reported

as the potent PGPR strains for their ability to act as bio-

fertilizers (Vessey 2003). The relationship between the

PGPR and their host can be categorized into two basic

levels of complexity: (1) rhizospheric and (2) endophytic.

In rhizospheric relationship, the PGPRs can colonize the

rhizosphere, the surface of the root or even the superficial

intercellular spaces of plant roots (McCully 2001). It is

only due to the changes in different physico-chemical

properties of rhizospheric soil such as soil pH, water

potential and partial pressure of O2 and plant exudation as

compared to the bulk soil that in turn can affect the ability

of PGPR strains to colonize the rhizosphere (Griffiths et al.

1999). In endophytic relationship, PGPR resides within the

apoplastic spaces inside the host plants. There is a direct

evidence of existence of endophytes in the apoplastic

intercellular spaces of parenchyma tissue (Dong et al.

1997) and xylem vessel (James et al. 2001). Best examples

can be cited from legume-rhizobia symbioses in legumi-

nous plants (Vessey 2003). Thus, the means by which the

PGPRs enhance nutrient status of host plants and thereby

act as biofertilizers can be categorized into five distinct

areas such as biological N2 fixation, increasing the avail-

ability of nutrients in rhizosphere, increase in root surface

area, enhancing beneficial symbioses of the host and finally

the combinations of all the above modes of action. How-

ever, the degree of intimacy between the PGPRs and host

plant can vary depending on where and how the PGPR

colonizes the plant.

Quorum sensing signal interference and inhibition

of biofilm formation

Quorum sensing (QS) is a community genetic regulation

mechanism that controls microbiological functions of medi-

cal, agricultural and industrial importance. Discovery of

microbial QS signaling led to identification of numerous

enzymatic and non-enzymatic signal interference mecha-

nisms that could quench microbial QS signaling (Zhang and

Dong 2004) and inhibition of biofilm formation (Ren et al.

2001). QS activation is mediated by a small autoinducer (AI)

molecule, responsible for cell–cell communication and the

Fig. 2 Schematic

representation of solubilisation

of soil phosphorus by

rhizobacteria (Khan et al. 2009)
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coordinated action in many bacteria, including PGPRs.

Commonly reported autoinducer signals are N-acyl homo-

serine lactones (AHLs) (von Bodman et al. 2003), although

half a dozen of other molecules, including diketopiperazines

in several Gram-negative bacteria (Holden et al. 1999),

furanosyl borate diester in Vibrio harveyi (Chen et al. 2002)

and c-butyrolactone in Streptomyces (Yamada and Nihira

1998) have also been implicated in density-dependent sig-

naling. Investigations on QS signal interference mechanisms

thus might significantly broaden the scope of research in

modern biotechnology.

Production of ACC deaminase and regulation

of ethylene level in plants

Although ethylene is essential for normal growth and devel-

opment in plants, at high concentration it can be harmful as it

induces defoliation and other cellular processes that may lead

to reduced crop performance. Using their 1-amino cyclopro-

pane-1-carboxylic acid (ACC) deaminase activity, PGPR can

divert ACC from the ethylene biosynthesis pathway in the root

system of Arabidopsis thaliana plant (Desbrosses et al. 2009).

Thus, rhizobacteria assist in diminishing the accumulation of

ethylene levels and re-establish a healthy root system needed

to cope with environmental stress. The primary mechanism

includes the destruction of ethylene via enzyme ACC deam-

inase. There are number of publications (Ghosh et al. 2003;

Govindasamy et al. 2008; Duan et al. 2009) mentioning rhi-

zosphere bacteria such as Achromobacter, Azospirillum,

Bacillus, Enterobacter, Pseudomonas and Rhizobium with

ACC deaminase activity. Most of the studies have demon-

strated the production of ACC deaminase gene in the plants

treated with PGPR under environmental stress. Grichko and

Glick (2001) inoculated tomato seeds with Enterobacter

cloacae and Pseudomonas putida expressing ACC deaminase

activity and registered an increase in plant resistance. Ghosh

et al. (2003) recorded ACC deaminase activity in three

Bacillus species namely, Bacillus circulans DUC1, Bacillus

firmus DUC2 and Bacillus globisporus DUC3 that stimulated

root elongation in Brassica campestris. Mayak et al. (2004)

observed tomato plants inoculated with the bacterium

Achromobacter piechaudii under water and saline stress

conditions and reported a significant increase in fresh and dry

weight of inoculated plants. Similar increase in root dry matter

and aerial parts in canola (Brassica napus) seeds with the

inoculation of ACC deaminase gene producing bacterium,

Pseudomonas asplenii are reported by Reed and Glick (2005).

Morphological changes in certain plant species after inocu-

lation with PGPR containing ACC deaminase gene has been

presented in Table 3.

Genetic modification of PGPR strains expressing ACC

deaminase gene are helpful in biological control of various

plant diseases. PGPR containing ACC deaminase can boost

the plant growth particularly under stressed environmental

conditions like salinity, drought, water logging, tempera-

ture, pathogenicity and contaminants in response to a

multitude of abiotic and biotic stresses (Saleem et al.

2007). In canola, ACC deaminase containing bacteria

conferred salt tolerance and promoted plant growth by

lowering the synthesis of salt-induced ethylene (Cheng

et al. 2007). Recently, a bacterial strain, Pseudomonas

fluorescens TDK1 containing ACC deaminase is reported

to enhance the saline resistance and overall yield in

groundnut as compared to those inoculated with Pseudo-

monas strains lacking ACC deaminase activity (Govin-

dasamy et al. 2008). Although efforts have thus, been made

to introduce ACC deaminase genes into plants for optimum

growth, the genetic modifications for all the plant species

are not yet possible due to many handicaps like proprietary

rights and international trade agreements on genetically

modified (GM) crops and limitations of DNA recombinant

technology.

Production of volatile organic compounds

The discovery of rhizobacterial-produced volatile organic

compounds (VOCs) constitutes an important mechanism

for the elicitation of plant growth by rhizobacteria. Ryu

et al. (2003) recorded some PGPR strains namely Bacillus

subtilis GB03, B. amyloliquefaciens IN937a and Entero-

bacter cloacae JM22 that released a blend of volatile

components, particularly, 2, 3-butanediol and acetoin,

which promoted growth of Arabidopsis thaliana, suggest-

ing that synthesis of bioactive VOCs is a strain-specific

phenomenon. Acetoin-forming enzymes have been identi-

fied earlier (Forlani et al. 1999) in certain crops like

tobacco, carrot, maize and rice although their possible

functions in plants were not properly established in that

period. It has now been established that the VOCs pro-

duced by the rhizobacterial strains can act as signalling

molecule to mediate plant–microbe interactions as volatiles

produced by PGPR colonizing roots are generated at suf-

ficient concentrations to trigger the plant responses (Ryu

et al. 2003). Farmer (2001) identified low-molecular-

weight plant volatiles such as terpenes, jasmonates and

green leaf components as potent signal molecules for living

organisms in different trophic levels. However, to acquire a

clear appreciation on the mechanisms of VOCs in signal-

ling plants to register plant defence more investigations

into the volatile components in plant-rhizobacteria system

should follow.

Rhizosphere engineering

Rhizosphere microbial populations are tremendously

affected by the interactions between the plants and the soil
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environment. Rhizosphere engineering involves the selec-

tion of beneficial microbial populations by plant rhizo-

sphere. For instances, some crop species or cultivars select

populations of antibiotic-producing strains that play a

major role in soils, naturally suppressive to soil-borne

fungal pathogens (Ryan et al. 2009). Persistent organic

pollutants such as polychlorinated biphenyls (PCBs) are a

global problem. Using root-associated microbes in rhizo-

spheric engineering approach, the levels of PCBs can be

successfully depleted as these microbes can use plant

secondary metabolites such as phenylpropanoids (Nara-

simhan et al. (2003). Similar technology has been devel-

oped by Lugtenberg et al. (2001) during their investigation

on the growth of microbes with the ability to metabolize

exotic nutrients exuded by plants. One of the earliest suc-

cess of this technology was based on the favourable par-

titioning of the exotic nutrient opines, produced by the

transgenic plants (Oger et al. 1997) that led to the improved

and competitive growth of the metabolizing strains in

comparison with the microbes unable to metabolize opines.

Rhizosphere engineering ultimately reduces our reliance on

agrochemicals by replacing their functions with beneficial

microbes, biodegradable biostimulants or transgenic plants

(Ryan et al. 2009). It is now possible to create a nutritional

bias that may be especially successful in identifying

microbial populations due to the general nutrient-limiting

conditions in rhizosphere. Molecular microbiological

advances are tremendously been exploiting in order to

achieve a complete knowledge of the complex chemical

and biological interactions that generally occurs in the

rhizosphere, ensuring that the strategies to engineer the

rhizosphere are safe and eco-friendly to agricultural sys-

tems. For example, plants are genetically engineered to

modify the rhizosphere pH to release the compounds that

could improve nutrient availability, protect plants against

biotic and abiotic stresses or encourage the proliferation of

beneficial microorganisms. Growth stimulation can be

mediated directly through enhanced nutrient acquisition or

modulation of phytohormone synthesis. While, indirect

stimulation involves the induction of plant antagonism

(Ryan et al. 2009). Sundheim et al. (1988) observed that an

engineered strain of Pseudomonas expressing chitinase

gene from Serratia marcescens more effectively controlled

Fusarium oxysporum f. sp. redolens and Gaeumannomyces

graminis var. tritici in vitro. Recently, experiments tar-

geting on the DAPG-producing PGPR strain, Pseudomonas

fluorescens (phlD?) have demonstrated that plant species

can differentially enrich and support different microbial

populations (De La Fuente et al. 2006) and genotypes

(Landa et al. 2006) in the rhizosphere. Notz et al. (2001)

significantly correlated DAPG accumulation by Pseudo-

monas fluorescens CHA0 with the expression of DAPG

biosynthesis gene phlA and observed that the expression

was significantly greater in the rhizosphere of monocots

Table 3 Morphological changes in plants brought about by PGPR strains containing ACC deaminase gene

Plant species PGPR strains Morphological changes References

Brassica
campestris

Methylobacterium fujisawaense Bacterium promoted root elongation

in canola

Madhaiyan et al.

(2006)

B. campestris Bacillus circulans DUC1, B. firmus DUC2, B. globisporus
DUC3

Bacterial inoculation enhanced root

and shoot elongation

Ghosh et al.

(2003)

B. napus Alcaligenes sp. Bacillus pumilus, Pseudomonas sp.

Variovorax paradoxus
Inoculated plant demonstrated more

vigorous growth than the uninoculated

(control)

Belimov et al.

(2001)

B. napus Enterobacter cloacae Significant increases in root and shoot

lengths were observed

Saleh and Glick

(2001)

Dianthus
caryophyllus L.

Azospirillum brasilense Cd1843 Inoculated cuttings produced longest roots Li et al. (2005)

Glycine max Pseudomonas cepacia Rhizobacterium caused an early soybean

growth

Cattelan et al.

(1999)

Pisum sativum L. Rhizobium leguminosarum bv. viciae 128C53 K Bacterium enhanced nodulation in plants Ma et al. (2003)

Vigna radiata L. Pseudomonas sp. Bradyrhizobium sp. Bacterium promoted nodulation

in mung bean

Shaharoona

et al. (2006)

V. radiata L. Pseudomonas putida The ethylene production was inhibited in

inoculated cuttings

Mayak et al.

(1999)

Zea mays L. Enterobacter sakazakii 8MR5, Pseudomonas sp. 4MKS8,

Klebsiella oxytoca 10MKR7

Inoculation increased agronomic

parameters of maize

Babalola et al.

(2003)

Zea mays L. Pseudomonas sp. Bacterium caused root elongation in

maize

Shaharoona

et al. (2006)

World J Microbiol Biotechnol

123



than dicots. Although the exact mechanism is not totally

understood, Di Gregorio et al. (2006) noticed a combined

application of Triton X-100 and Sinorhizobium sp. Pb002

inoculums for the improvement of lead phytoextraction by

Brassica juncea in EDTA amended soil.

PGPR as biotic elicitors

Elicitors are chemicals or biofactors of various sources that

can trigger physiological and morphological responses and

phytoalexin accumulation in plants. It may be abiotic

elicitors such as metal ions or inorganic compounds and

biotic elicitors, basically derived from fungi, bacteria,

viruses, plant cell wall components and chemicals that are

released due to antagonistic reaction of plants against

phytopathogens or herbivore attack. It has now been

observed that the treatment of plants with biotic elicitors

can cause an array of defence reactions including the

accumulation of a range of plant defensive bioactive

molecules such as phytoalexins in the intact plants. Thus,

elicitation is being used to induce the expression of genes

responsible for the synthesis of antimicrobial metabolites.

Rhizosphere microbes are best known to act as biotic

elicitors, which can induce the synthesis of secondary

products in plants (Sekar and Kandavel 2010). Signal

perception is the first committed step towards the biotic

elicitor signal transduction pathway in plants. Jasmonic

acid and its methyl ester are the signal transducers in a

wide range of plant cell cultures that could accumulate

rapidly when the suspension cultures of Rauvolfia canes-

cens L. and Eschscholtzia californica Cham. are treated

with a yeast elicitor (Roberts and Shuler 1997). Some of

the well reported PGPRs as biotic elicitors have been

exemplified in Table 4. Ajmalicine, serpentine, picrocro-

cin, crocetin, hyoscyamine and scopolamine, safranal

compounds and tanshinone are recorded as the important

metabolites produced by PGPR species in eliciting the

physiological and morphological responses in crop plants.

Induction of systemic disease resistance

Application of mixtures of different PGPR strains to the

seeds or seedlings of certain plants has resulted in

increased efficiency of induced systemic resistance (ISR)

against several pathogens (Ramamoorthy et al. 2001).

Various non-pathogenic, PGPR strains have the ability to

induce systemic disease resistance in plants against broad

spectrum phytopathogens (Kloepper et al. 2004; Elbadry

et al. 2006). Induction of systemic disease resistance in

faba bean (Vicia faba L.) against bean yellow mosaic

potyvirus (BYMV) via seed bacterization with Pseudo-

monas fluorescens and Rhizobium leguminosarum has been

investigated by Elbadry et al. (2006). They isolated PGPR

strains from the roots of faba bean and examined singly or

in combination for the induction of resistance in faba bean

against BYMV. The results established a pronounced and

significant reduction in percent disease incidence (PDI) as

well as in virus concentration (ELISA) in plants treated

with Pseudomonas fluorescens and Rhizobium legumin-

osarum as compared to the non-bacterized plants. Simi-

larly, induction of systemic resistance by Pseudomonas

putida strain 89B-27 and Serratia marcescens strain

90–166 against Fusarium wilt of cucumber incited by

Fusarium oxysporum f.sp. cucumerinum has been investi-

gated by Liu et al. (1995). Alstroem (1991) observed

induced systemic protection of PGPR against the bacterial

diseases. He reported that the bean seeds when treated with

Pseudomonas fluorescens protected the plant against the

halo blight disease caused by Pseudomonas syringae pv.

phaseolicola. Kloepper et al. (1993) treated cucumber

seeds with rhizobacterial strains like Pseudomonas putida

89B-27 and Serratia marcescens 90–166 and recorded a

significant decrease in incidence of bacterial wilt. Similar

investigations on the treatment of cucumber seeds against

angular leaf spot disease caused by Pseudomonas syringae

pv. lachrymans, with a large number of PGPR strains such

as Pseudomonas putida 89B-27, Flavomonas oryzihabitans

INR-5, Serratia marcescens 90–166 and Bacillus pumilus

INR-7 has been made by Wei et al. (1996). They observed

more systemic protection in the plants (indicated by the

reduction of total lesion diameter) whose seeds are inocu-

lated with the strains of PGPR as compared to the unin-

oculated plants. Pieterse et al. (2001) studied rhizobacterial

strain, Pseudomonas fluorescens to enhance the defensive

capacity in plants against broad spectrum foliar pathogens

(Fig. 3). Based on their experiments they concluded that

Table 4 PGPR species as biotic elicitors to elicit plant response

PGPR species Plant Metabolite induced in plant Sample references

Pseudomonas fluorescens Catharanthus roseus (L.) G. Don Ajmalicine Jaleel et al. (2007)

P. fluorescens Catharanthus roseus (L.) G. Don Serpentine Jaleel et al. (2009)

P. putida and P. fluorescens Hyoscyamus niger L Hyoscyamine and Scopolamine Ghorbanpour et al. (2010)

Bacillus subtilis Crocus sativus L Picrocrocin, Crocetin and Safranal compounds Sharaf-Eldin et al. (2008)

B. cereus Salvia miltiorrhiza Bunge Tanshinone Zhao et al. (2010)
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Pseudomonas fluorescens strain WCS417r could elicit

systemic disease resistance in plants through a variety

of signal translocation pathways like SA-independent

JA-ethylene dependent signalling, ISR-related gene

expression, NPR 1-dependent signalling etc. Recently,

interactions between Bacillus spp. and plants with special

reference to induced systemic disease resistance have been

elicited by Choudhary and Johri (2009). Several strains of

Bacillus like B. amyloliquefaciens, B. subtilis, B. pasteurii,

B. cereus, B. pumilus, B. mycoides and B. sphaericus (Ryu

et al. 2004) are presently recorded to elicit significant

reduction in disease incidence on diversity of hosts. Elic-

itation of resistance by the strains has been demonstrated

both in green house and field trials on tomato, bell pepper,

muskmelon, watermelon, sugarbeet, tobacco and cucum-

ber. Through the activation of various defence-related

enzymes like chitinases, b-1, 3-glucanase, peroxidise (PO),

phenylalanine ammonia-lyase (PAL) and polyphenol oxi-

dase (PPO), PGPR strains can induce this type of systemic

resistance in plants (Bharathi 2004).

Nitrogen fixation

Nitrogen (N) is one of the principal plant nutrients,

becoming a limiting factor in agricultural ecosystems due

to heavy losses by rainfall or mineral leaching. Number of

PGPR strains such as Azoarcus sp., Beijerinckia sp.,

Klebsiella pneumoniae, Pantoea agglomerans and Rhizo-

bium sp. are reported to fix atmospheric N2 in soil (Antoun

et al. 1998; Riggs et al. 2001) and make it available to

plants. Parmar and Dadarwal (1999) recorded fluorescent

pseudomonads to promote nodulation in chickpea and lat-

ter demonstrated the role of this group of rhizosphere

microbiota in N2 fixation. Recently, Minorsky (2008)

reported a PGPR strain, Pseudomonas fluorescens B16,

exhibiting vigorous colonization in the roots of tomatoes,

causing enhancement in plant height, flower number and

total fruit weight. A similar investigation on rhizobia to

replace the use of nitrogen fertilizer was made by Vessey

(2003) and thereby demonstrated a clear picture of

improvement in crop yield after the inoculation of

    Pseudomonas florescence WCS417r

Before 
challenge 
inoculation 

        Induction of ISR pathway 

SA-independent 
JA-ethylene 
dependent 
signalling 

        Translocation of ISR signal 

Potential of 
specific JA-
responsive 

genes 

Enhanced ACC-
converting 
capacity 

ISR-related 
gene 

expression 

Enhanced 
production of 

ethylene

Enhanced 
expression of 
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responsive genes 

Induced systemic resistance 

NPR 1-
dependent 
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Fig. 3 Possible involvement of

jasmonic acid and ethylene in

Pseudomonas fluorescens
WCS417r-mediated induced

systemic resistance in

Arabidopsis (Adapted from

Pieterse et al. 2001)
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rhizobacteria in agricultural soil. A list of PGPR species

along with their ability to fix atmospheric N2 in different

plants has been illustrated in Table 5. PGPR can fix

atmospheric N2 either symbiotically or non-symbiotically.

Symbiotic N2 fixation to legume crops with the inoculation

of effective PGPRs are well known (Dobereiner 1997;

Barea et al. 2005; Esitken et al. 2006). Various rhizobac-

terial species like Azotobacter spp., Bacillus spp., Beijer-

inckia spp., etc., have the capacity to fix atmospheric

N2 symbiotically. However, the process of symbiotic

N2 fixation is limited only to legume crops and various

trees and shrubs that form actinorrhizal roots with Frankia.

On the other hand, non-symbiotic biological N2 fixation is

basically carried out by free living diazotrophics, belonging

to the genera like Azoarcus (Reinhold-Hurek et al. 1993),

Azospirillum (Bashan and de-Bashan 2010), Burkholderia

(Estrada de los Santos et al. 2001), Gluconacetobacter

(Fuentes-Ramirez et al. 2001) and Pseudomonas (Mirza

et al. 2006). Besides, combined inoculations of rhizobac-

terial species to improve the quality of soil are also seemed

to be a potent area of research in present day agriculture.

For instances, combined inoculations of Bradyrhizobium

sp., with Pseudomonas striata have established enhanced

nodule occupancy in soya bean resulting in more biological

N2 fixation (Dubey 1996).

Growth enhancement

Application of PGPR strains in agriculture is a potential

issue in increasing international demand for food and

improving environmental quality. PGPRs have been con-

tinuously used to enhance the plant growth, seed emer-

gence and overall yield of crops in different agro-

ecosystems (Minorsky 2008). Inoculation of PGPR species

could increase the growth attributes like leaf area, chloro-

phyll content and consequently, the total biomass of the

musa plantlets under nitrogen-free hydroponics (Baset Mia

et al. 2010) as compared to the uninoculated control.

Dobbelaere et al. (2001) assessed the inoculation effect of

Azospirillum sp., on the growth of some agriculturally

important plants and observed a significant increase in the

dry weight of both the root system and aerial parts of the

PGPR inoculated plants, resulting in better development

and flowering. Esitken et al. (2003) investigated the foliar

applications of rhizobacterial microbes in mulberry and

apricot and observed better development in total leaf area

and chlorophyll production of the inoculated plants. Sev-

eral PGPR strains such as Achromobacter xylosoxidans,

Bacillus subtilis, B. licheniformis, B. pumilus, Brevibacte-

rium halotolerans and Pseudomonas putida are identified

as having crucial roles in cell elongation, increasing ACC

deaminase activity and plant growth promotion (Sgroy

et al. 2009). Total root length, surface area and volume in

tomato and cucumber roots increased after inoculation with

Pseudomonas fluorescens 92rk and P190r (Saravanakumar

and Samiyappan 2007). PGPR induces changes in external

layers of root cortex due to enhanced divisions of cells in

root tips of maize and wheat seedlings (Baset Mia et al.

2010). Seeds of various crops and ornamental plants bac-

terized with a mixture of PGPR and rhizobia before

planting resulted in enhanced growth and disease resistance

(Zehnder et al. 2001). Khalid et al. (2004) observed the

growth responses of wheat after the inoculation with rhi-

zobacteria and suggested that the growth of wheat basically

depends on a number of factors like plant genotype, nature

of PGPR inoculants as well as environmental conditions.

There are also reports concerning the root inoculation of

apple trees with Bacillus M3 and Microbacterium FS01,

resulting in significant tree growth and yield (Karlidag

et al. 2007). One of the possible mechanisms of enhancing

apple trees growth in the study might be due to enhanced

production of plant growth regulators and mobilization of

Table 5 PGPR species and

their ability to fix atmospheric

N2 in certain plants

PGPR Relationship to host Host crops Sample references

Azospirillum sp. Rhizospheric Maize

Rice

Wheat

Garcia de Salamone et al. (1996)

Malik et al. (1997)

Boddey et al. (1986)

Azoarcus sp. Endophytic Kallar grass

Sorghum

Hurek et al. (2002)

Stein et al. (1997)

Azotobacter sp. Rhizospheric Maize

Wheat

Pandey et al. (1998)

Mrkovacki and Milic (2001)

Bacillus polymyxa Rhizospheric Wheat Omar et al. (1996)

Burkholderia sp. Endophytic Rice Baldani et al. (2000)

Gluconacetobacter sp. Endophytic Sorghum

Sugarcane

Isopi et al. (1995)

Boddey et al. (2001)

Herbaspirillum sp. Endophytic Rice

Sorghum

James et al. (2002)

James et al. (1997)
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available nutrients by PGPRs. Ahanthem and Jha (2007)

observed the response of rice crops, inoculated with ar-

buscular mycorrhizal (AM) fungi and PGPR in soils dif-

fering in nitrogen concentrations. They recorded maximum

shoot biomass, shoot phosphorus and nitrogen content in

the rice plants inoculated with Azotobacter chroococcum in

combination with Glomus sp., than when the plants were

inoculated either of them above. Interactions between

Acaulospora and Azospirillum and their synergistic effect

on rice growth at different sources and regimes of soil

phosphorus have also been made by Ahanthem and Jha

(2008). The results thus, indicated the influence of micro-

bial inoculants in reducing the inorganic fertilizer demand

by 50%.

Rhizoremediation

The application of PGPRs in rhizoremediation technolo-

gies is now being considered as effective, since inoculation

of PGPR strains could aid remarkable enhancement in

plant growth and development on contaminated agrocli-

matic conditions. Rhizobacteria can directly assist rhizo-

remediation by producing IAA, biological nitrogen

fixation, solubilizing P and secreting siderophores (Denton

2007). PGPR strains, pseudomonads and Acinetobacter

enhance uptake of Fe, Zn, Mg, Ca, K and P by crop plants

(Esitken et al. 2006). PGPR along with AM fungi are now

being utilized in the nutrient poor agricultural soils to

increase the solubility of heavy metals and thereby

increasing the chances of success in rhizoremediation.

Besides, investigations on the application of PGPR strains

in decreasing the bioavailability of toxicity resulting in

better growth and development in heavy metal contami-

nated soils through recycling of nutrients, maintaining soil

structure, detoxifying chemicals and controlling pests are

also well studied (Denton 2007). Studies on certain rhizo-

bacteria in Ni uptake by Alyssum murale indicated that this

group of bacteria can release the metal from its non-soluble

phase by decreasing the pH of the environment (Zhuang

et al. 2007).

Effects of PGPR on root growth

The treatment of seeds or cuttings in some plants with non-

pathogenic bacteria, such as Agrobacterium, Alcaligenes,

Bacillus, Pseudomonas, Streptomyces, etc., induces root

formation (Esitken et al. 2003). This phenomenon might be

attributed to the production of auxin, inhibition of ethylene

synthesis or mineralization of nutrients by efficient PGPRs

(Steenhoudt and Vanderleyden 2000). More likely, PGPRs

have been reported for their immense potentiality to alter

several hormonal pathways that could account for different

morphological changes in plants like an increased elongation

rate of lateral roots, resulting in more architecture in bran-

ched root system of growing plants (Kapulnik et al. 1985).

However, considering about interactions between different

hormone signalling pathways in plants, it is difficult to

determine the exact pathway of elicitation of primary plant

rootings by PGPRs. Growth promoting effects of PGPRs on

rootings and root growth of Actinidia deliciosa stem cuttings

was examined by Erturk et al. (2010). Bacillus RC23,

Bacillus RC03, B. megaterium RC01, B. subtilis OSU142,

B. simplex RC19, Comamonas acidovorans RC41 and Pa-

enibacillus polymyxa RC05 were recorded as the successful

PGPRs in the experiment. All the bacteria were tested for

their IAA activity. Among the rhizobacterial treatments, the

highest rooting ratios were obtained at 47.50% for semi-

hardwood stem cuttings from Bacillus RC03 and B. simplex

RC19 treatments and 42.50% for hardwood stem cuttings

from Bacillus RC03. The results suggested the potentiality of

PGPR strains to replace the use of synthetic auxins in organic

nursery material production. Similarly, Desbrosses et al.

(2009) investigated the PGPR-Arabidopsis interaction to

establish the signalling pathways involved in controlling

plant development and observed an ethylene-independent

and auxin-independent mechanism, regulating the elonga-

tion of root hair in Arabiopsis. This is something of great

interest since genetic screens for abnormal root hair pheno-

types in Arabidopsis repeatedly led to the isolation of

mutants altered in ethylene or auxin response. They finally

concludes that a genetic screen based on inoculation trig-

gered root hair elongation could be a successful tool to

unravel mechanisms involved in the control of root hair

elongation.

Maintenance of soil fertility and nutrient uptake

PGPR can change the plant physiology and certain nutri-

tional and physical properties of rhizospheric soil and

indirectly influence on the colonization patterns of soil

microorganisms in that particular region. Inoculation of

rhizobacteria increased uptake of nutrient elements like Ca,

K, Fe, Cu, Mn and Zn by plants through stimulation of

proton pump ATPase (Mantelin and Touraine 2004).

Reports are available on the combinations of Bacillus and

Microbacterium inoculants to improve the uptake of the

mineral elements by crop plants (Karlidag et al. 2007). This

increase in nutrient uptake by plants might be explained

through organic acid production by the plants and PGPRs,

decreasing the soil pH in rhizosphere. Ample evidences

(Phillips 1980; Forde 2000; Glass et al. 2002) are there

on the maintenance of soil fertility by the rhizobacterial

isolates to increase the availability of nutrients for plants.

Solubilization of unavailable forms of nutrients is one of

the essential criteria in facilitating the transport of most of

these nutrients (Glick 1995).
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Resistance to water stress

Drought stress causes limitation to the plant growth and

productivity of agricultural crops particularly in arid and

semi-arid areas. Inoculation of plants with PGPR can

enhance the drought tolerance (Figueiredo et al. 2008) that

might be due to the production of IAA, cytokinins, anti-

oxidants and ACC deaminase. Inoculation of seeds of

Phragmites australis with Pseudomonas asplenii improved

germination and protect the plants from growth inhibition

(Bashan et al. 2008). PGPR are also reported as beneficial

to the plants like tomatoes and peppers growing on water

deficit soils for conferring resistance to water stress con-

ditions (Aroca and Ruiz-Lozano 2009). More investiga-

tions into the mechanisms by which PGPR elicit tolerance

to specific stress factors would improve our knowledge on

the use of these rhizobacteria in agriculture to provide

induced systemic tolerance to water stress.

Antagonistic activity of PGPR

Rhizobacteria can suppress the growth of various phyto-

pathogens in variety of ways like competing for nutrients

and space, limiting available Fe supply through producing

siderophores, producing lytic enzymes and antibiosis

(Jing et al. 2007). Among PGPRs, fluorescent pseudomo-

nads are widely reported for their broad spectrum antago-

nistic activity against number of phytopathogens. Han et al.

(2005) have reported Delftia tsuruhatensis strain, HR4,

which suppressed the growth of various plant pathogens

like Pyricularia oryzae, Rhizoctonia solani and Xantho-

monas oryzae. Deliveries of microbial antagonists with

urban and agricultural wastes are believed to be the most

effective means in suppressing root pathogens of avocado

and citrus (Sultana et al. 2006). Recently, different PGPR

strains of Rhizobium meliloti have been reported to produce

siderophores (Arora et al. 2001) in iron stress conditions

and thereby added an advantage to exclude the pathogen,

Macrophomina phaseolina, causing charcoal rot of

groundnut. Application of Pseudomonas aeroginosa in

combination with common medicinal plant Launaea nu-

dicaulis also holds good promises for effective control of

root infecting fungi of mungbean (Mansoor et al. 2007).

PGPR as biocontrol agent

Competition for nutrients, niche exclusion, induced sys-

temic resistance and production of anti-fungal metabolites

(AFMs) is the probable means responsible for biocontrol

activity of PGPRs (Bloemberg and Lugtenberg 2001).

Most of the PGPRs are recorded to produce AFMs, of

which phenazines, pyrrolnitrin, 2, 4-diacetylphloroglucinol

(DAPG), pyoluteorin, viscosinamide and tensin are the

frequently detected classes. Among PGPRs, Pseudomonas

is the best-characterized biocontrol agent at molecular

level. P. fluorescens strain, WCS374 has been recorded to

suppress Fusarium wilt in radish leading to an average

increase of 40% in yield (Bakker et al. 2007). The indi-

vidual genes such as phzO and phzH responsible for the

presence of functional group on phenazine compound have

been detected (Chin-A-Woeng et al. 2001). More recently,

informations have been generated on the biosynthesis of

pyoluteorin in Pseudomonas fluorescens Pf-5 and 2, 4-di-

acetylphloroglucinol in P. fluorescens Q2-87 (Kidarsa et al.

2011). Biocontrol activity of Streptomyces spp. are repor-

ted by Kumar et al. (2009) indicating the tremendous

potentiality of PGPRs as an alternative in controlling plant

diseases in agriculture than that of conventional fungicides.

A list of PGPR strains used as biocontrol agents against a

large number of phytopathogens and insects affecting crop

plants are shown in Table 6. Azospirillum, Azotobacter,

Bacillus, Enterobacter, Paenibacillus, Pseudomonas and

Streptomyces are recorded as the potent genera of rhizo-

bacteria acting against the pathogens like tomato mottle

virus, tobacco necrosis virus, Rhizoctonia bataticola,

Myzus persicae, Acyrthosiphon kondoi, Fusarium avena-

ceum etc. Besides, experiments on the dual effect of PGPR

and AM fungi on Fusarium oxysporum f. sp., melongenae

causing brinjal wilt has been made by Kalita et al. (2009).

PGPR strains such as Azotobacter sp., Azospirillum sp.,

and Pseudomonas fluorescens and AM fungi like Glomus

fasciculatum, G. mossae and Gigaspora margarita are

recorded as the most promising microbes to suppress the

wilt disease of brinjal, in vitro. The microbial inoculants

when used as composite inoculum exhibited maximum

efficiency in the suppression of diseases with the charac-

teristic increase in chlorophyll content, total number of

leaves, shoot height and thereby facilitating overall crop

yield than when inoculated singly. However, application of

these PGPR strains did not affect populations of beneficial

indigenous rhizosphere bacteria including the fluorescent

pseudomonads and the siderophore-producing bacterial

strains.

Selection and characterization of PGPR strains

PGPR strains have diverse applications in agriculture,

horticulture and forestry. The process of applying rhizo-

bacteria in soil and plant parts to eradicate bacterial and

fungal pathogens was pioneered in Soviet Union by 1958

(Suslow et al. 1979) even though the selection of effica-

cious PGPR strains at that period was highly complicated.

Specific PGPR strains are initially selected from several

hundreds of root-colonizing bacteria isolated from excised
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roots of field grown plants. Potential PGPRs are then

selected for their ability to inhibit the growth of various

phytopathogens or miscellaneous rhizosphere bacteria and

fungi in vitro. Pure cultures of antagonistic rhizobacterial

strains are screened in greenhouse trials. Seed or seed

pieces of test plants are then treated with bacterial sus-

pension (108 cfu/ml) and planted in replicated pot tests.

During the experiment, those PGPRs that consistently

caused statistically significant increases in root or shoot

development or both are selected for further testing in

agricultural field. Recently, selections of efficacious PGPR

strains have been made by mass screening technique

(Compant et al. 2005). Here, primary screenings of new

isolates are done based on physiological, nutritional and

biochemical characteristics as in Bergey’s Manual of

Determinative Bacteriology (Holt et al. 1994). While

DNA and RNA homology tests are also considered as

most reliable tools for the characterization of potent

PGPR strains (Bashan et al. 1993). Now-a-days, appli-

cation of protein profile analysis technique (Maiti et al.

2009) proved to be useful for patenting procedures.

Restriction fragment length polymorphism (RFLP) anal-

ysis (Osborn et al. 2000) by using probe-target sequence

and restriction endonuclease digestion pattern are useful

for specific strain identification. However, gas chro-

matographic analysis of cellular fatty acid is very useful

and proved to be accurate enough for identifying effica-

cious bacterial strains (Sasser 1990).

Commercialization of PGPR

The success and commercialization of PGPR strains

depend on the linkages between the scientific organizations

and industries. According to Nandakumar et al. (2001)

different stages in the process of commercialization include

isolation of antagonist strains, screening, pot tests and field

efficacy, mass production and formulation development,

fermentation methods, formulation viability, toxicology,

industrial linkages and quality control. Thus, isolation of an

effective strain is a prime criterion for better agricultural

development, which is usually done from pathogen sup-

pressive soils either by dilution plate technique or by

baiting the soil with fungal structures like sclerotia (Nak-

keeran et al. 2005). The selection of best antagonistic strain

is carried out by screening for antimicrobial action against

different soil borne pathogens apart from the target path-

ogen. The plant, pathogen and antagonists are then co-

exposed to controlled environmental conditions. Promising

antagonists are further tested for their efficacy in field trials

along with standard recommended fungicides (Pengnoo

et al. 2000). Mass production is achieved through liquid

(Manjula and Podile 2001), semisolid and solid fermenta-

tion techniques (Lewis 1991). Moreover, commercial suc-

cess of PGPR strains requires economical and viable

market demand, consistent and broad spectrum action,

safety and stability, longer shelf life, low capital costs and

easy availability of career materials. Thus, the first

Table 6 PGPR used as bio

control agents against different

diseases, pathogens and insects

affecting different crops

PGPRs Crops Disease/pathogen/

insect

Sample references

Bacillus amyloliquefaciens Tomato Tomato mottle virus Murphy et al. (2000)

Pseudomonas fluorescens Tobacco Tobacco necrosis
virus

Park and Kloepper (2000)

Bacillus pumilus SE 34 Tobacco Blue mold Zhang et al. (2003)

Pseudomonas sp. Groundnut Rhizoctonia
bataticola

Gupta et al. (2002)

Streptomyces marcescens
90–116

Tobacco Blue mold Zhang et al. (2003)

Bacillus sp. Cucumber Cotton aphids Stout et al. (2002)

Bacillus licheniformis Pepper Myzus persicae Lucas et al. (2004)

Bacillus cereus MJ-1 Red pepper Myzus persicae Joo et al. (2005)

Pseudomonas sp. White clover

Medicago
Acyrthosiphon

kondoi
Kempster et al. (2002)

Paenibacillus polymyxa E681 Sesame Fungal disease Ryu et al. (2006)

Enterobacter sp. Chickpea Fusarium avenaceum Hynes et al. (2008)

Azospirillum brasilense Prunus cerasifera L. Rhizosphere fungi Russo et al. (2008)

Pseudomonas aeruginosa Mung bean Root rot Siddiqui et al. (2001)

Bacillus subtilis G803 Pepper Myzus persicae Kokalis-Burelle et al.

(2002)

Bacillus amyloliquefaciens Bell pepper Myzus persicae
Sluzer

Herman et al. (2008)
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requirement for entrepreneurship requires a patent appli-

cation of the identified strain. Quality control in this step is

crucial to retain the confidence of farmers on the efficacy of

the antagonistic strain. Research inventions from China,

Russia and several other western countries have now

proved the potential use of PGPRs towards plant disease

management. The first commercial product of Bacillus

subtilis was developed during 1985 in US. 60–75% of

cotton, peanut, soya bean, corn, vegetables and small grain

crops raised in US are now treated with commercial

product of B. subtilis, which become effective against soil

borne pathogens such as Fusarium and Rhizoctonia (Nak-

keeran et al. 2005). In China, PGPRs have been success-

fully applied over two decades about an area of 20 million

hectares of different crop plants for commercial develop-

ment. Owing to the potentiality of Bacillus spp., more than

20 different commercial products of Bacillus origin are

sold in China to mitigate soil borne diseases (Backman

et al. 1997). Besides, Bacillus spp., certain other PGPR

strains belonging to the genera such as Agrobacterium,

Azospirillum, Bulkholderia, Pseudomonas and Streptomy-

ces are also used for the production of several commercial

products, which are generally being applied against several

target pathogens like Botrytis cinerea, Penicillium spp.,

Mucor pyroformis, Geotrichum candidum, Erwinia amy-

lovora, russet-inducing bacteria, Fusarium sp., Rhizoctonia

sp., Pythium sp., Fusarium sp., Phytophthora sp., and

P. tolassii (Nakkeeran et al. 2005). Some of the important

PGPR strains along with their commercial products as

formulated by Chet and Chernin (2002) and Glick et al.

(1999) are represented in Table 7. Since PGPRs have its

own potentiality in controlling plant diseases and pest

management, these commercial products such as Diegall,

Galltrol-A, Zea-Nit, Epic, Quantum 4000, Victus, Myco-

stop etc., have, therefore, been registered for the practical

use of farming community. Besides, the potentiality of

PGPR inoculants in beneficial improvement of agricultural

plants in developing countries can never be ignored. In

India, more than 40 stakeholders from different provinces

have registered themselves for the mass production of

PGPRs with Central Insecticide Board (CSI), Faridabad,

Haryana through collaboration with Tamil Nadu Agricul-

tural University, Coimbatore, India.

Future prospects and challenges

PGPR inoculants can fulfil diverse beneficial interactions

in plants leading to promising solutions for sustainable and

environment-friendly agriculture. The applications of rhi-

zosphere soil of agricultural crops with desirable bacterial

populations have established considerable promises in both

the laboratory and greenhouse experiment. Further,

improved understanding on the way by which PGPRs

promote plant growth can lead to expanded exploitation of

these ‘biofertilizers’ to reduce the potential negative

environmental effects associated with the food and fiber

production. An effort of applying genetically engineered

PGPRs to remediate complex contaminated soil (Denton

2007) and thereby increasing the productivity of crop

plants in agriculture is another attractive idea of research in

recent decade. The rhizobacterial community can be spe-

cifically engineered to target various pollutants at co-con-

taminated sites to provide customized rhizoremediation

system (Wu et al. 2006). Recent progress of molecular

biology and biotechnology in the understanding of rhizo-

bacterial interactions with the nodules of crop plants will

encourage a suitable area of research in PGPR mechanisms

relating to rhizosphere colonization. Reports are now

available from genetically engineered Arabidopsis thaliana

plants to remove lead and cadmium contaminates after

inoculating with rhizobacterial population. However,

Table 7 Commercial products developed using different PGPR strains

PGPR Products Intended crop

Agrobacterium radiobacter Diegall, Galltrol-A, Nogall, Norbac 84 C Fruit, nut, ornamental nursery stock and trees

Azospirillum brasilense Azo-Green Turf and forage crops

Bacillus subtilis Epic, HiStick N/T, Kodiak, Rhizo-Plus,

Serenade, Subtilex

Barley, beans, cotton, legumes peanut, pea, rice and soybean

B. amyloliquefaciens GB99 Quantum 4000 Broccoli, cabbage, cantaloupe, cauliflower, celery,

cucumber, lettuce, ornamentals, peppers, tomato

and watermelon

Burlkholderia cepacia Blue Circle, Deny, Intercept Alfalfa, barley, beans, clover, cotton, maize, peas,

sorghum, vegetables and wheat

Pseudomonas fluorescens BlightBan A506, Conquer, Victus Almond, apple, cherry, mushroom, peach, pear, potato,

strawberry and tomato

P. syringae Bio-save10 Citrus and pome fruit

Streptomyces griseovirdis K61 Mycostop Field, ornamental and vegetable crops
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combined applications of transgenic plants with PGPRs

have proved another promising future (Ali and Hj 2010) in

advancing rhizoremediation technologies. Efforts have,

therefore, been concentrated on the production of trans-

genic plants which can increase remediation efficiency by

expressing a particular PGPR protein (Zhuang et al. 2007).

Farwell et al. (2007) compared the growth of a transgenic

canola, Brassica napus inoculated with PGPR strain,

Pseudomonas putida UW4, to normal canola and found a

significant growth in the former. Besides, the symbiotic

relationship of Pseudomonas putida and sunflower seeds

with synthetic phytochelatins has been investigated by Wu

et al. (2006). They observed that the engineered strain

could protect the sunflower plants against the toxic effects

of cadmium at 300 lM concentration. Thus, biotechnology

can be applied to improve the efficacy of PGPR strains

through transgenics for agricultural improvement. How-

ever, modern technology based on the transformations of

1-aminocyclopropane-1-carboxylic acid deaminase gene,

which directly stimulates plant growth by cleaving the

immediate precursor of plant ethylene into Pseudomonas

fluorescens CHAO not only increased the plant growth but

also accelerated biocontrol properties of PGPR species

(Holguin and Glick 2001). Genomic tinkering of naturally

occurring PGPR strains with effective genes (Nakkeeran

et al. 2005) could lead to accentuated expression of

genomic products and thereby alleviating the attack of both

pests and diseases on field crops that would further facili-

tate for better introduction of a single bacterium with

multiple modes of action to benefit the growers. Thus,

future success of industries producing microbial inoculants,

especially PGPRs, will depend on innovative business

management, product marketing, extension education and

extensive research. Further optimization is required for

better fermentation and formulation processes of effective

PGPR strains to introduce in agriculture.

Conclusion

The present review indicates the development and formu-

lations of PGPRs in biological promotion of different

characteristics of plant growth. Most of the PGPR isolates

significantly increased plant height, root length and dry

matter production in various agricultural crops like potato,

tomato, maize, wheat, etc. The development of stable

formulations of antagonistic PGPRs in sustainable agri-

cultural systems thus, established as another promising

approach replacing the use of chemical fertilizers. Besides,

PGPRs are protecting natural environments as well as

biological resources by playing a significant role in inte-

grated pest management system (IPM). In addition to this,

certain PGPR strains have also the ability to activate

octadecanoid, shikimate and terpenoid pathways (Gouws

2009) which in turn assists in the alterations of VOCs

production in host plants. In accordance with their mode of

action, PGPRs can be classified as biofertilizers, phytosti-

mulators and biopesticides with certain bacteria having

overlapping applications. However, screening strategies for

selecting the best rhizobacterial strain for rhizosphere

competence and studies on the ecology of introduced

PGPR with the resident PGPR and other microbial species

in the plant rhizosphere will require more comprehensive

knowledge, although the involvement of ACC deaminase

gene, siderophore, phosphate, phytohormones like IAA,

cytokinin, gibberellins etc., noduation, disease suppression

and their coordinated expression seemed to be responsible

in enhancing the plant growth, yield and nutrient uptake of

various crop plants in different agro ecosystems. Thus, it is

becoming increasingly apparent that most of the PGPR

strains can promote plant growth by several mechanisms,

though most studies currently focus on individual mecha-

nisms and have not yet been able to sort out the relative

contributions of different processes that are also responsi-

ble for successful plant growth promotion. However,

carefully controlled field trials of crop plants inoculated

along with rhizobacteria are necessary for maximum

commercial exploitation of PGPR strains.
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